WEAK COHERENCE OF GROUPS AND FINITE DECOMPOSITION COMPLEXITY

BORIS GOLDFARB

ABSTRACT. The weak regular coherence (WRC) property of a finitely generated group \(\Gamma \) was introduced by G. Carlsson and this author to play the role of a weakening of Waldhausen’s regular coherence as part of computation of the integral \(K \)-theoretic assembly map. This property is a coarse invariant of the word metric. It was shown that groups with finite asymptotic dimension (FAD) have this property.

A new class of metric spaces (sFDC) was introduced recently by A. Dranishnikov and M. Zarichnyi. This class includes most notably the spaces with finite decomposition complexity (FDC) studied by E. Guentner, D. Ramras, R. Tessera, and G. Yu and so is larger than FAD. The main theorem of this paper shows that a group that belongs to sFDC is weakly regular coherent.

As a consequence, groups \(\Gamma \) with sFDC have some remarkable algebraic properties. For a noetherian ring \(R \), we obtain a family of finitely generated \(R[\Gamma] \)-modules of type \(\text{FP}_1 \). Further, this gives finite dimensional \(R[\Gamma] \)-modules under some additional hypotheses on the ring and the group. A topological application is vanishing of the Whitehead group for any group that has finite \(K(\Gamma, 1) \) and FDC.

1. Geometric preliminaries 2
2. Filtered modules over a metric space 3
3. Applications 6
References 9

Contents

Given a closed topological manifold, there are many topological consequences of the fact that the fundamental group has finite asymptotic dimension (FAD). It is known that the Novikov conjecture is true for such manifolds from the pioneering work of Yu [15]. The Novikov conjecture in integral \(K \)-theory was proved for groups with FAD by Bartels [2]. Further, the integral Borel conjecture for groups with finite \(K(\pi, 1) \) and FAD was verified by Carlsson and the author [3, 4, 5, 6]. The latter fact, in particular, has the consequence that the Whitehead group of such \(\Gamma \) is trivial.

The ultimate goal of this paper is to extend these results further to groups that have finite decomposition complexity (FDC) as defined by Guentner–Tessera–Yu [10]. The work of Carlsson–Goldfarb shows that the Borel isomorphism conjecture follows from the combination of the coarse integral Novikov conjecture and the

Date: May 17, 2013.
weak regular coherence property. The integral Novikov conjecture for these groups has already been verified by Ramras–Tessera–Yu [13].

The groups with FDC or sFDC are intermediate between the class FAD and the groups with Yu’s property A [8]. Some well-known examples of groups with infinite asymptotic dimension, such as the wreath product of two copies of the integers \(\mathbb{Z} \), belong to both classes. Further examples of FDC groups established in [11] are all finitely generated subgroups of \(GL_n(k) \), where \(k \) is a field. For other interesting infinite dimensional groups such as Thompson’s group, Grave’s group, Gromov’s random groups the answer is unknown. It is also unknown where groups such as \(\text{Out}(F_n) \) belong in this hierarchy.

The author is grateful to A. Dranishnikov for sharing the early version of the paper [8] and other related communications.

1. Geometric preliminaries

The following is a summary of relationships between some coarse properties of metric spaces.

The original definition of asymptotic dimension by M. Gromov is a coarse analogue of the covering dimension of topological spaces.

Definition 1.1. The asymptotic dimension of a metric space \(X \) is defined as the smallest number \(n \) such that for any \(d > 0 \) there is a uniformly bounded cover \(\mathcal{U} \) of \(X \) such that any metric ball of radius \(d \) in \(X \) meets no more than \(n + 1 \) elements of the cover \(\mathcal{U} \). If such number exists for \(X \), one says that \(X \) has finite asymptotic dimension.

A number of authors generalized FAD in several directions in recent years. One such generalization is asymptotic property C defined in Dranishnikov [7].

Given a subset \(S \) of a metric space \(X \), we will use the notation \(S[b] \) for the \(b \)-enlargement of \(S \), that is the subset \(\{ x \in X \mid d(x, s) \leq b \text{ for some } s \in S \} \). So, in particular, the metric ball centered at \(x \) with radius \(r \) is denoted by \(x[r] \). Also, given a number \(R > 0 \), a collection of disjoint subsets \(S_\alpha \) of \(X \) is called \(R \)-disjoint if \(S_\alpha[R] \) is disjoint from the union \(\bigcup_{\beta \neq \alpha} S_\beta \), for all \(\alpha \).

Definition 1.2 (APC). A metric space \(X \) has the asymptotic property C if for every sequence of positive numbers \(R_1 \leq R_2 \leq \ldots \) there exists a natural number \(n \) and uniformly bounded \(R_\alpha \)-disjoint families \(W_i, 1 \leq i \leq n \), such that the union of all \(n \) families is a covering of \(X \).

On the other hand, the following is one of the equivalent definitions of the finite decomposition complexity from Guentner–Tessera–Yu.

Let \(\mathcal{X} \) and \(\mathcal{Y} \) be two families of metric spaces. Let \(R > 0 \). The family \(\mathcal{X} \) is called \(R \)-decomposable over \(\mathcal{Y} \) if for any space \(X \) in \(\mathcal{X} \) there are collections of subsets \(\{ U_{1,\alpha} \} \) and \(\{ U_{2,\beta} \} \) such that

\[
X = \bigcup_{i=1,2} \bigcup_{\gamma=\alpha,\beta} U_{i,\gamma},
\]

each \(U_{i,\gamma} \) is a member of the family \(\mathcal{Y} \), and each of the collections \(\{ U_{1,\alpha} \} \) and \(\{ U_{2,\beta} \} \) is \(R \)-disjoint. A family of metric spaces is called bounded if there is a uniform bound on the diameters of the spaces in the family.
One of the equivalent definitions of finite decomposition complexity of the metric space X is in terms of a winning strategy for the following game between two players. In round number 1 the first player selects a number $R_1 > 0$, the second player has to select a family of metric spaces Y_1 and an R_1-decomposition of $\{X\}$ over Y_1. In each succeeding round number i the first player selects a number $R_i > 0$, the second player has to select a family of metric spaces Y_i and an R_i-decomposition of Y_{i-1} over Y_i. The second player wins the game if for some finite value of i the family Y_i is bounded.

Definition 1.3 (FDC). A metric space X has finite decomposition complexity if the second player possesses a winning strategy in every game played over X.

The following property was defined by A. Dranishnikov and M. Zarichnyi in [8].

Definition 1.4 (sFDC). A metric space X has straight finite decomposition complexity if, for any sequence $R_1 \leq R_2 \leq \ldots$ of positive numbers, there exists a finite sequence of metric families V_1, V_2, \ldots, V_n such that X is R_1-decomposable over V_1, V_1 is R_2-decomposable over V_2, etc., and the family V_n is bounded.

The relationship between the four geometric conditions on a metric space is established in [8] and is expressed by the diagram

```
FAD

APC  FDC

sFDC
```

All four classes satisfy Yu’s property A.

In this paper we generalize [4] to a larger class of $R[\Gamma]$-modules by weakening the geometric condition on the group, promoting the main theorem from Γ with FAD to Γ with sFDC.

2. Filtered modules over a metric space

We start by recasting some of the controlled algebra from [5].

Let R be a left noetherian ring with unit and let $\text{Mod}(R)$ be the category of left R-modules. For a general set X, the power set $\mathcal{P}(X)$ partially ordered by inclusion is a category with subsets of X as objects and unique morphisms (S, T) when $S \subset T$.

Definition 2.1. An X-filtered R-module is a functor $F: \mathcal{P}(X) \to \text{Mod}(R)$ where all structure maps $F(S, T)$ are monomorphisms and $F(\emptyset) = 0$.

We will abuse notation by referring to $F(X)$ as F. For any covariant functor $F: \mathcal{P}(X) \to \text{Mod}(R)$ with $F(\emptyset) = 0$ there exists an associated X-filtered R-module F_X given by $F_X(S) = \text{im} F(S, X)$.

Given a filtered module F and an arbitrary submodule F', the submodule has the **standard X-filtration** given by $F'(S) = F(S) \cap F'$. For example, for each subset $T \subset X$, the submodule $F(T)$ of F has the canonical filtration and gives a filtered module F_T with $F_T(S) = F(S) \cap F(T)$.

We will assume that X is a proper metric space in the sense that all closed metric balls in X are compact.
Definition 2.2. Given a number $b \geq 0$, an R-homomorphism $\varphi: F_1 \to F_2$ is called \textit{b-controlled} or simply \textit{controlled} if the image $\varphi(F_1(S))$ is contained in the submodule $F_2(S[b])$ for all subsets $S \subseteq X$.

Here $S[b]$ stands for the metric b-enlargement of S in X defined as the subset $\{x \in X \mid d(x, S) \leq b\}$.

We say φ is \textit{b-bicontrolled} or \textit{bicontrolled} if in addition to containments
\[\varphi(F_1(S)) \subseteq F_2(S[b]) \]
as above, there are containments
\[\varphi(F_1(S) \cap F_2(S)) \subseteq \varphi(F_1(S[b])) \]
for all subsets S of X.

The X-filtered objects F may be subject to the following constraints.

- F is \textit{locally finite} if $F(V)$ is a finitely generated submodule of F whenever V is a bounded subset of X.
- F is \textit{D-lean} or simply \textit{lean} if there is a number $D \geq 0$ such that we have
\[F(U) \subseteq \sum_{x \in U} F(x[D]) \]
for any subset U of X.
- F is \textit{δ-split} or \textit{split} if there is a number $\delta \geq 0$ such that we have
\[F(U_1 \cup U_2) \subseteq F(U_1[\delta]) + F(U_2[\delta]) \]
for any pair of subsets U_1, U_2 of X.
- F is \textit{d-insular} or \textit{insular} if there is a number $d \geq 0$ such that
\[F(U_1) \cap F(U_2) \subseteq F(U_1[d] \cap U_2[d]) \]
for any pair of subsets U_1, U_2 of X.

It is clear that a D-lean module is D-split.

If F is X-filtered, the kernel K of an arbitrary homomorphism $f: F \to G$ inherits the standard filtration $K(S) = K \cap F(S)$.

Proposition 2.3. Given a bicontrolled epimorphism $f: F \to G$, suppose F is split and G is insular. Then the kernel K with the standard filtration is split.

Proof. Suppose F is δ-split and G is d-insular. Let $i: K \to F$ be the inclusion of the kernel. Given $z \in K(T \cup U)$, we have $i(z) \in F(T \cup U) \subseteq F(T[\delta]) + F(U[\delta])$, so we can write accordingly $i(z) = y_1 + y_2$ where $f(y_1) = -f(y_2)$. Since G is d-insular,
\[f(y_1) = -f(y_2) \in G(T[\delta + b]) \cap G(U[\delta + b]) \subseteq G(T[\delta + b + d] \cap U[\delta + b + d]), \]
so we are able to find
\[y \in F(T[\delta + 2b + d] \cap U[\delta + 2b + d]) \]
such that $f(y) = f(y_1) = -f(y_2)$, because generally $(S \cap P)[b] \subseteq S[b] \cap P[b]$. Thus
\[i(z) = y_1 + y_2 = (y_1 - y) + (y_2 + y) \]
and
\[y_1 - y \in F(T[\delta + 2b + d]), \ y_2 + y \in F(U[\delta + 2b + d]). \]
Let $z_1 = i^{-1}(y_1 - y)$ and $z_2 = i^{-1}(y_2 + y)$, and we have $z = z_1 + z_2$ such that
\[z_1 \in K(T[\delta + 2b + d]), \quad z_2 \in K(U[\delta + 2b + d]), \]
so K is $(\delta + 2b + d)$-split.

Proposition 2.4. Given a b-controlled homomorphism $f : F \to G$, suppose F is D-lean and G is d-insular. Let K be the kernel of f and let U be the union of a $(2D+2b+2d)$-disjoint collection $\{U_\alpha\}$ of subsets of X. Then $K(U) \subset \sum K(U_\alpha[D])$.

Proof. Since F is D-lean, an arbitrary element $k \in K(U)$ can be written as a sum $k = \sum k_\alpha$ where $k_\alpha \in f(F(U_\alpha[D]))$. To check that $k_\alpha \in K$, consider $k'_\alpha = \sum_{\beta \neq \alpha} k_\beta$ and $U'_\alpha = \bigcup_{\beta \neq \alpha} U_\beta$. Then $f(k_\alpha) \in G(U_\alpha[D + b])$ and $f(k'_\alpha) \in G(U'_\alpha[D + b])$. So $f(k_\alpha) = f(k'_\alpha) \in G(U_\alpha[D + b + d]) \cap U'_\alpha[D + b + d] = G(\emptyset) = 0$. □

Theorem 2.5. Suppose X is a metric space with sFDC. Given a bicontrolled epimorphism $f : F \to G$, suppose F is lean and G is insular. Then the kernel K with the standard filtration is lean.

Proof. Since F is D-split if it is D-lean, Proposition 2.3 can be applied showing that K is $(2D+2b+2d)$-split.

We start with the sequence of numbers $R_1 \leq R_2 \leq \ldots \leq R_k \leq \ldots$ where $R_k = 2(k+1)D+2b+2d$. By the assumption, there is a sequence of metric families Y_1, Y_2, \ldots with the corresponding R_k-decompositions so that for some n the family Y_n is bounded.

To start the inductive argument, assume that $X = U_1 \cup V_1$ so that U_1 is the union of an $R_1 = 4D+2b+2d$-disjoint family $\{U_{1,\alpha}\}$ and V_1 is the union of an R_1-disjoint family $\{V_{1,\beta}\}$. Then each element k in K is the sum $k_{1,U} + k_{1,V}$ for some $k_{1,U} \in K(U_1[D])$ and $k_{1,V} \in K(V_1[D])$. Since both $\{U_{1,\alpha}[D]\}$ and $\{V_{1,\beta}[D]\}$ are $(2D+2b+2d)$-disjoint, we have $k_{1,U} = \sum k_{1,U,\alpha}$, $k_{1,V} = \sum k_{1,V,\beta}$ where $k_{1,U,\alpha} \in K(U_{1,\alpha}[D]), k_{1,V,\beta} \in K(V_{1,\beta}[D])$. By the assumption, each $\{U_{1,\alpha}\}$ and $\{V_{1,\beta}\}$ is $R_2 = (6D+2b+2d)$-decomposable over Y_2. Therefore each $\{U_{1,\alpha}[D]\}$ and $\{V_{1,\beta}[D]\}$ is $(4D+2b+2d)$-decomposable over $Y_2[D]$. In particular, if $U_{1,\alpha} = U_{2,\alpha} \cup V_{2,\alpha}$ so that $U_{2,\alpha}$ is the union of an R_2-disjoint family $\{U_{2,\alpha,\gamma}\}$ then $U_{2,\alpha}[D]$ is the union of an $R_3 = 2D = (4D+2b+2d)$-disjoint family $\{U_{2,\alpha,\gamma}[D]\}$. The decompositions can be continued inductively for the total of n steps giving k as the sum of kernel elements in $f(W[2nD])$, where $W \in Y_n$. So k is generated by the kernel elements with uniformly bounded support: if the sets in Y_n have mesh bounded by M then K is $(2M+2nD)$-lean. □

We will view a finitely generated group Γ as a metric space with the word metric generated from some choice of a finite generating set. Then Γ acts by left translations on itself, and each left translation is an isometry.

Definition 2.6. A Γ-filtered $R[\Gamma]$-module is Γ-equivariant or simply a Γ-module if $F(\gamma S) = \gamma F(S)$ for all choices of $\gamma \in \Gamma$ and $S \subset \Gamma$.

Corollary 2.7. Suppose Γ is a finitely generated group with sFDC. Given a bicontrolled $R[\Gamma]$-epimorphism $f : F \to G$ of Γ-modules, suppose F is lean and G is insular. Then the kernel K is finitely generated.

Proof. The kernel is lean by Theorem 2.5. If D is a leanness constant then K is generated by $K \cap F(e[D])$, where e is the identity element, as an $R[\Gamma]$-module. Since
3. Applications

3.1. Weak regular coherence of sFDC groups. Let A be a ring with a unit.

Definition 3.1. A left A-module is said to be of type FP_∞ if it has a resolution by finitely generated projective A-modules. The ring A is called **coherent** if every finitely presented A-module is of type FP_∞. It is called **regular coherent** if each resolution can be chosen to be finite.

An A-module has **finite projective dimension** if it has a finite resolution by finitely generated projective A-modules. The ring A has **finite (global) dimension** if every finitely generated A-module has a resolution by finitely generated projective A-modules of some fixed length.

Waldhausen [14] discovered a remarkable collection of discrete groups Γ such that all finitely presented modules over the group ring $\mathbb{Z}[\Gamma]$ are regular coherent. It includes free groups, free abelian groups, torsion-free one relator groups, fundamental groups of submanifolds of the three-dimensional sphere, and their various amalgamated products and HNN extensions and so, in particular, the fundamental groups of submanifolds of the three-dimensional sphere. Waldhausen called this property of the group **regular coherence** and used it to compute the algebraic K-theory of these groups. He asked if a weaker property of the group ring would suffice in his argument, see for example the paragraph after the proof of Theorem 11.2 in [14]. The regular coherence property for groups seems to be very special—simply constructing individual finite dimensional modules over group rings is hard. The **weak regular coherence** property defined in Carlsson–Goldfarb [3] turned out to play that role in a different argument [6] with the same purpose of computing the integral assembly map in K-theory.

Given a left $R[\Gamma]$-module F with a finite generating set Σ, it is also an R-module with the generating set $B = \Sigma \times \Gamma$. There is a locally finite set function $s : B \to \Gamma$ which maps $(\sigma, \gamma) \to \gamma$. On the other hand, one can associate to every subset S of Γ the left R-submodule generated by $\Sigma \times S$. There is a functor $F : \mathcal{P}(\Gamma) \to \text{Mod}_R(F)$, from the power set of Γ to the R-submodules of F, given by $F(S) = \{b \in B \mid s(b) \in S\}$ such that $F(\Gamma) = F$, $F(\emptyset) = 0$, and for a bounded subset $T \subset \Gamma$, $F(T)$ is a finitely generated R-module. This shows that F is a Γ-filtered R-module. In fact, it is Γ-equivariant by the definition of filtration.

Notation 3.2. In the rest of this section, R will be a noetherian ring with unit.

The following are elementary facts and consequences of Corollary 2.7.

Proposition 3.3. (0) Whenever two choices of finite generating sets Σ_1 and Σ_2 give two filtrations F_1 and F_2 of the same $R[\Gamma]$-module F, the identity map $F_1 \to F_2$ is bicontrolled.

(1) Every $R[\Gamma]$-homomorphism $\phi : F \to G$ between equivariant Γ-filtered modules, where F is lean, is controlled.

(2) Every controlled epimorphism of lean filtered modules is bicontrolled. Therefore every $R[\Gamma]$-epimorphism of lean Γ-modules is bicontrolled.

(3) Let Γ be a finitely generated group with sFDC then the kernel of an $R[\Gamma]$-epimorphism of lean and insular Γ-modules is lean and insular. In particular, it is finitely generated.
The cokernel and the image of a bicontrolled $R[\Gamma]$-homomorphism of lean and insular Γ-modules is lean and insular.

One has the following family of important examples.

Example 3.4. A controlled idempotent homomorphism of an equivariant filtered module is always bicontrolled. Indeed, if $\phi: F \to F$ is an idempotent so that $\phi^2 = \phi$ then $\phi| = \text{id}$, so $\phi f(X) \cap f(S) \subset \phi f(S)$. As a consequence, the cokernels and images of idempotents of finitely generated free $R[\Gamma]$-modules are lean insular Γ-modules.

Definition 3.5. An $R[\Gamma]$-module is finitely presented if it is the cokernel of a homomorphism, called presentation, between finitely generated free $R[\Gamma]$-modules. If the homomorphism is bicontrolled, we call the presentation admissible.

Proposition 3.6. Let Γ be a finitely generated group with sFDC. Every lean insular Γ-module has an admissible presentation.

Proof. Suppose F is D-lean. Since the R-submodule $F(e[D])$ is finitely generated, there is a finitely generated free R-module F_e and a surjective R-homomorphism $\phi_e: F_e \to F(e[D])$. One similarly has epimorphisms $\phi_{\gamma}: F_{\gamma} \to F(\gamma[D])$ using isomorphic copies F_{γ} of F_e. We define a new locally finite Γ-filtered module F_0 by assigning $F_0(S) = \bigoplus_{\gamma \in S} F_{\gamma}$. Then clearly F_0 is a lean and insular Γ-module. There is an $R[\Gamma]$-homomorphism $\phi_0: F_0 \to F$ sending $F_0(\gamma)$ onto $F(\gamma[D])$ via ϕ_{γ}. Viewed as an R-homomorphism, this ϕ_0 is D-bicontrolled, so from Theorem 2.5 the kernel K of ϕ_0 is a lean insular Γ-module. One similarly constructs a filtered module F_1 and a bicontrolled $R[\Gamma]$-homomorphism $\phi_1: F_1 \to K$. The composition of ϕ_1 and the inclusion of K in F_0 gives a bicontrolled $\psi_1: F_1 \to F_0$ with the cokernel F, as required. \qed

Corollary 3.7. Let Γ be a finitely generated group with sFDC. Every lean insular Γ-module is of type FP_{∞}.

Proof. Applying the construction from the proof of Proposition 3.6, one obtains a projective $R[\Gamma]$-resolution by finitely generated $R[\Gamma]$-modules

$$\ldots \to F_n \to F_{n-1} \to \ldots \to F_1 \to F_0 \to F \to 0$$

In this resolution, each homomorphism $\psi_n: F_n \to F_{n-1}$ factors through an epimorphism ϕ_n onto a lean insular Γ-submodule K_{n-1} of F_{n-1}. \qed

The following are appropriate weakenings of the coherence conditions for finitely generated groups.

Definition 3.8. Let R be an arbitrary noetherian ring with unit. The following definitions are relative to this choice.

We say that a finitely generated group Γ is weakly coherent if every $R[\Gamma]$-module with an admissible presentation is of type FP_{∞}. We define Γ to be weakly regular coherent if every $R[\Gamma]$-module with an admissible presentation has finite projective dimension.

When these terms are used without explicit specification of the choice of R, it is assumed that R is the ring of integers \mathbb{Z}.

The following is the main result of the paper.
Theorem 3.9. Suppose Γ is a finitely generated group with the sFDC property. Then Γ is weakly coherent. If, in addition, Γ belongs to the class LHR and R is coherent and finite dimensional then Γ is weakly regular coherent.

Proof. The first statement follows directly from Corollary 3.7. For the second statement we examine the resulting projective resolution of F with an admissible presentation. By Theorem A of Kropholler [12], there is $d \geq 0$ such that the d-th kernel K_d is isomorphic to a direct summand of a polyelementary module. When Γ is torsion-free, the elementary modules of the form $U \otimes_R R[\Gamma]$, where U is projective over R, are themselves projective over $R[\Gamma]$. So the polyelementary modules are also projective. This makes K_d a projective $R[\Gamma]$-module. □

It is worth noting that the integer d in the proof may be strictly greater than the projective dimension of the ring R. There is still a possibility that for the lean insular Γ-modules, R-flatness implies $R[\Gamma]$-flatness, and therefore $R[\Gamma]$-projectivity since all lean insular Γ-modules are finitely presented. This is certainly not true in general due to phenomena related to Moore’s conjecture, cf. [1].

Corollary 3.10. Let F be a lean insular Γ-filtered abelian group viewed as a \mathbb{Z}-module. Suppose Γ has sFDC, and there is a finite $K(\Gamma, 1)$ complex. Then F has finite projective dimension over $\mathbb{Z}[\Gamma]$.

3.2. The Whitehead group of FDC groups. The motivating goal of this paper is to extend the techniques used in [3, 4, 5, 6] to larger geometric contexts. The results of this paper in conjunction with the proof of the Novikov conjecture for the FDC groups in [13] prove the vanishing of the Whitehead groups for FDC groups with finite classifying spaces.

The lean insular Γ-modules form an exact category which contains the finitely generated projective $\mathbb{Z}[\Gamma]$-modules as an exact subcategory. For details we refer to [5]. It follows from Quillen’s Resolution Theorem and Corollary 3.10 that the inclusion induces the Cartan isomorphisms on the level of algebraic K-groups whenever Γ has sFDC and a finite $K(\Gamma, 1)$.

It is known that the Whitehead group $Wh(\Gamma)$ contains obstructions to some crucial constructions in the classification theory of manifolds with the fundamental group Γ. Vanishing of the entire Whitehead group is a very much desired fact. This group fits in a long exact sequence of groups where the pairs of adjacent groups are related by assembly maps, namely $A_0: H_0(\Gamma, K(\mathbb{Z})) \rightarrow K_0(\mathbb{Z}[\Gamma])$ and $A_1: H_1(\Gamma, K(\mathbb{Z})) \rightarrow K_1(\mathbb{Z}[\Gamma])$. Thus $Wh(\Gamma) = 0$ if both of these maps are isomorphisms. This last question is studied under the name integral Borel conjecture in algebraic K-theory. It is answered positively in [3, 4, 5, 6] whenever (1) the Eilenberg–MacLane space $K(\Gamma, 1)$ has the homotopy type of a finite complex, (2) the injectivity of all assembly maps A_i follows from a splitting of the map of nonconnective spectra that model the homology and the K-theory, and (3) the group Γ is weakly regular coherent, giving therefore the Cartan equivalence from the preceding paragraph.

It is known that (2) holds for groups satisfying (1) and having FDC by a slightly stronger result of Ramras–Tessera–Yu [13]. Condition (3) holds for groups with sFDC and a finite $K(\Gamma, 1)$ by the main result of this paper.

This gives the following consequence.

Theorem 3.11. If Γ is a group with FDC and a finite $K(\Gamma, 1)$ then the Whitehead group $Wh(\Gamma)$ is trivial.
References

Department of Mathematics and Statistics, SUNY, Albany, NY 12222

E-mail address: bgoldfarb@albany.edu

URL: http://www.albany.edu/~goldfarb/