The total number of points is 20. There are 3 problems.

Question 1 (6 points). Let G be any group.
(a) Prove that if an element g in G satisfies $g \cdot g = g$ then $g = e$.
(b) Prove that if G has no proper subgroups then G must be a cyclic group.

(a) Every element $g \in G$ has an inverse g'. I will multiply both sides of the equation $g \cdot g = g$ (and on the same side of the expressions!) by g': $g' (g \cdot g) = g' \cdot g$. By associativity, $(g' g) g = g' \cdot g$. Using $g' \cdot g = e$, $e \cdot g = e \Rightarrow g = e$.

(b) Suppose $g \neq e$ in G. (If G has no such element then $G = \{ e \}$ and so is cyclic.) Consider the cyclic subgroup $\langle g \rangle < G$. It cannot be proper but it is also not $\{ e \}$ because $g \in \langle g \rangle$ so $\langle g \rangle = G$.
Question 2 (6 points). Let \(G = S_4 \) and let \(H \) be the subgroup of \(G \) which permutes the first three of the four elements and keeps the fourth fixed.

(a) Find the order of \(H \).
(b) Find the index of \(H \) in \(G \).

\((a) \) I need to count the elements of \(H \).
Each element fixes the 4th element of the set \(\{1, 2, 3, 4\} \) and permutes \(\{1, 2, 3\} \).
There are no other constraints.
So \(H \) has the same # of elements as \(S_3 \).
Now \(|H| = |S_3| = 3! = 6 \).

\((b) \) \(|G| = |S_4| = 4! = 24 \)
So the index \([G : H] = \frac{|H|}{|G|} = \frac{6}{24} = 4 \).
Question 3 (8 points). Let G be any group, and let K and L be arbitrary subgroups of G. Prove that the intersection $K \cap L$ is also a subgroup of G.

- $K \cap L$ is nonempty because $e \in K$ and $e \in L \Rightarrow e \in K \cap L$

- Suppose $g \in K \cap L$ and $h \in K \cap L$.
 This means that $g \in K$, $h \in K \Rightarrow gh \in K$ because $K \leq G$ and, independently, $g \in L$, $h \in L \Rightarrow gh \in L$ because $L \leq G$. Therefore, $gh \in K \cap L$.

- Suppose $g \in K \cap L$ then $g \in K$, $g \in L$
 $K \leq G \Rightarrow g' \in K \Rightarrow g' \in K \cap L$
 $L \leq G \Rightarrow g' \in L \Rightarrow g' \in K \cap L$

I have shown $K \cap L$ is nonempty, closed under the operation, and under taking inverses \Rightarrow it is a subgroup of G.