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Abstract

Many governmental agencies and businesses organizations use networked systems to pro-
vide a number of services. Such a service-oriented network can be implemented as an overlay
on top of the physical network. It is well recognized that the performance of many of the net-
worked computer systems is severely degraded under node and edge failures. The focus of our
work is on the resilience of service-oriented networks. We develop a graph theoretic model for
service-oriented networks. Using this model, we propose metrics that quantify the resilience
of such networks under node and edge failures. These metrics are based on the topological
structure of the network and the manner in which services are distributed over the network.
Based on this framework, we address two types of problems. The first type involves the anal-
ysis of a given network to determine its resilience parameters. The second type involves the
design of networks with a given degree of resilience. We present efficient algorithms for both
types of problems. Our approach for solving analysis problems relies on known algorithms
for computing minimum cuts in graphs. Our algorithms for the design problem are based on
a careful analysis of the decomposition of the given graph into appropriate types of connected
components.
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1 Introduction

1.1 Motivation

Federal and state governmental agencies, businesses and other organizations use networked sys-

tems to provide a number of services. Private networks maintained by organizations allow one

component of the organization (such as the Emergency Management Agency) to access services

provided by other components (such as Transportation Agency, Health Services, etc.). In these sit-

uations, fast and reliable access to information is needed. Several papers in the literature have pro-

posed architectures for service-oriented networks (see for example [DME02a, DME02b, DMR03,

GBI03]). In such an architecture, each node is associated with two sets of services, namely lo-

cal and non-local services. When a user requests a service that is locally available at a node, the

node provides the service directly. When the requested service is non-local, the node forwards

the user’s request to another node in the network where the service is available, and relays the

response to the user. Different approaches for implementing service-oriented networks are avail-

able in the literature (e.g. [CZ+99, GJ99, IF01, DMR03, GBI03, GTS03, MKG03, SP03]). Typically,

such networks are implemented as overlay networks on top of the application layer.

It is well recognized that many of the networked computer systems used by various gov-

ernment agencies and organizations are not resilient enough to withstand failures and attacks.

The performance of these networks is severely degraded by failures. Thus, it is important to de-

velop techniques for designing and implementing resilient service-oriented networks which can

not only survive attacks and failures but also continue to provide a reasonable level of service to

support critical infrastructure and activities of governmental agencies and organizations. Meth-

ods for implementing networks that can continue to function under node and link failures are

known (see for example [He99, GJ99, MKG03]). Also, techniques for data replication to ensure

availability of data in the event of network failures are available (see for example [CMN03, GL03,

DW01, Si01, He99]). In the context of resilient service-oriented networks, services must also be

replicated. Further, when a failure or anomalous behavior is sensed by the network, it must have

the ability to migrate services to other nodes across the network, taking into consideration the

resource constraints at the nodes along the migration path. Such a feature is necessary to allow

critical services to be maintained on the network during duress and is especially useful for state

and federal agencies in handling crisis situations. Thus, effective methods for the design and anal-

ysis of resilient service-oriented networks must accommodate a variety of features and resource

constraints.

1.2 Our Contributions

Much of the work in the literature on service-oriented and overlay networks has addressed issues

such as the maintenance of routing tables at nodes and reliable transmission of service requests
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and network status information across the network. Our work considers the resilience of service-

oriented networks at a higher level of abstraction, assuming that lower level mechanisms for basic

network functions such as routing and service discovery are supported by the system. The focus

of our work is on the identification of suitable metrics that can be used to quantify the resilience

of service-oriented networks under node and edge failures. Such metrics are useful in assessing

the reliability of a given network (i.e., in analyzing a given network) as well as in choosing an

appropriate network topology and/or an optimal distribution of services over the network (i.e.,

in designing the network).

We propose a graph theoretic model for service-oriented networks and use this model to iden-

tify some resilience metrics. These metrics are based on the topology of the network and the

manner in which services are distributed over the network. An example of such a metric is node

resilience, which specifies the maximum number of node failures that a service-oriented network

can tolerate and still continue to provide services to users. (Precise definitions of this and other

metrics are given in Section 2.) These metrics are different from other notions of network resilience

(e.g. the minimum number of nodes or edges whose failure will disconnect the network) studied

in the literature (see for example [Pr86, Co87, NG90, HH93, Hw94, Ja94, MOY97]). In particular,

our metrics for service-oriented networks explicitly consider the distribution of services over the

nodes of a network. Additional discussion regarding these metrics is provided in Section 2.

Having identified some resilience metrics, we develop algorithms for analysis and design

problems arising in the context of resilient service-oriented networks. Given a service-oriented

network, the goal of the analysis problem is to compute the node and edge resilience parameters

of the network. We develop polynomial time algorithms for these problems. These algorithms

are derived through a transformation to the problem of computing minimal cutsets in graphs.

The design problem addressed in this paper concerns the placement of services at the nodes of

a given network so that the cost of placing the services is minimized and the resulting network

has a specified level of resilience. We consider this problem for single node and single edge fail-

ures, and develop polynomial algorithms. These algorithms are based on a careful analysis of the

decomposition of the given graph into appropriate types of connected components.

1.3 Organization of the Paper

The remainder of this paper is organized as follows. Section 2 presents our formal model and

the definitions of the resilience metrics considered in this paper. Section 3 presents algorithms for

analyzing a given service-oriented network. Section 4 presents algorithms for designing service-

oriented networks with a given degree of resilience. Section 5 provides some concluding remarks

and directions for further research.
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2 Formal Model and Structure-Based Resilience Metrics

2.1 Graph Model and Definitions of Metrics

Following standard practice [Ja94, Pr86], we model a network as an undirected connected graph.

Each node represents a computer system and each edge represents a bidirectional link between

the corresponding pair of systems. To model service-oriented networks, we associate two sets

of services with each node. For a node v, A(v) denotes the set of services available locally at v,

and N(v) denotes the set of nonlocal services needed at v. In other words, node v supports each

service in N(v) by forwarding requests for such a service to one or more nodes that offers it as a

local service. Thus, the sets A(v) and N(v) are disjoint. A user connected to node v may request

any service in A(v) ∪ N(v). For a node v, if service s ∈ N(v), we say that v is a demand point for

service s.

The nodes and/or links of a network may fail either because of an attack or because of equip-

ment failure. We assume that node failures corresponds to system crashes. Thus, we don’t con-

sider Byzantine node failures. In general, a system that has crashed cannot communicate with

any of its neighbors. Thus, each node failure can be modeled by deleting the failed node and all

the edges incident on the failed node from the underlying graph of the network. When a link

fails, it is assumed that no communication across the link is possible in either direction. Thus,

each link failure may be modeled by the deletion of the corresponding edge from the underlying

graph. Using these models for node and edge failures, several network resilience metrics have

been considered in the literature (see for example [Pr86, Co87, NG90, HH93, Hw94, Ja94, MOY97,

JW+00, BOS01, LK+03]). Examples of such metrics include node and edge connectivity parame-

ters of a graph (i.e., the minimum number of nodes or edges that must be removed to disconnect

the graph). Such metrics characterize the ability of a network to remain connected when nodes

and edges fail. They do not take into account the distribution of services across a network. As will

be seen, a service-oriented network may continue to function even when the underlying graph is

disconnected. Thus, new metrics are needed to capture the notion of resilience in service-oriented

networks.

Node and link failures may partition a network into a collection of two or more connected

components or subnetworks. In such a case, nodes in one subnetwork cannot access the services

provided by the nodes in another subnetwork. We say that a subnetwork is self-sufficient if each

service needed by a node in that subnetwork is provided by some node in the same subnetwork;

otherwise, the subnetwork is said to be deficient. Thus, a self-sufficient subnetwork can continue

to process requests from users even though it has been sequestered from the rest of the network

due to node and link failures. Given a network G(V, E) and a subset S ⊆ V ∪ E of nodes and/or

edges, we say that the network G is resilient with respect to the failure set S if each of the subnet-

works that results when all the nodes/edges in S fail is self-sufficient.

We can now define the structure-based resilience metrics proposed in this paper. To do this,
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we consider failure sets under two separate categories, namely node failures and edge failures. In

the former, each failure set consists only of nodes, and in the latter, each failure set consists only

of edges.

Definition 2.1 (a) A service-oriented network is k-edge-failure-resilient if no matter which subset of k

or fewer edges fails, each resulting subnetwork is self-sufficient. The edge resilience of a network is
the largest integer k such that the network is k-edge-failure-resilient.

(b) A service-oriented network is k-node-failure-resilient if no matter which subset of k or fewer nodes
fails, each resulting subnetwork is self-sufficient. The node resilience of a network is the largest
integer k such that the network is k-node-failure-resilient.

We now present an example to illustrate the resilience metrics.

Example: Consider the eight node network shown in Figure 1. The eight services provided by the

network are denoted by s1 through s8. For each node vi , the figure also shows the sets Ai (the

set of services available at vi) and Ni (the set of services needed at vi), 1 ≤ i ≤ 8. Note that the

node connectivity and the edge connectivity of the network are both one, since the network can

be disconnected by removing one node (for example, the node v3) or one edge (the edge {v3, v5}).

However, the node and edge resilience parameters of the network are both two. In particular,

the subnetworks obtained by deleting the edge {v3, v5} or one of the nodes v3 and v5 are all self-

sufficient. It can be verified that no matter which pair of vertices or which pair of edges is deleted,

each of the resulting subnetworks is self-sufficient. However, when the three edges {v1, v2}, {v1, v3}

and {v1, v4} are deleted, the subnetwork containing only the node v1 is deficient, since it does not

have access to service s4. Likewise, when the three nodes v1, v2 and v3 are deleted, the subnetwork

containing only the node v4 is deficient, since it does not have access to service s1.

2.2 Problem Formulation

We now provide precise formulations of the analysis and design problems considered in this pa-

per. We start with a specification of analysis problems.

Edge Resilience Problem (ERP)

Instance: A service oriented network consisting of an undirected graph G(V, E) and the sets Av

and Nv for each node v ∈ V .

Requirement: Compute the edge resilience of the network.

The formulation of Node Resilience Problem (NRP) is similar to that of ERP. Section 3 presents

efficient algorithms for these two problems.

Many versions of design problems for resilient service-oriented networks can be formulated.

We focus on design problems where the goal is choose an optimal distribution of services over
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v1 v3

v4

v5

v7

v8

v2 v6

A1 = {s1, s2, s3} N1 = {s4}

A2 = {s1, s2, s4} N2 = {s3}

A3 = {s1, s3, s4} N3 = {s2}

A4 = {s2, s3, s4} N4 = {s1}

A5 = {s5, s6, s7} N5 = {s8}

A6 = {s5, s6, s8} N6 = {s7}

A7 = {s5, s7, s8} N7 = {s6}

A8 = {s6, s7, s8} N8 = {s5}

Figure 1: Example to Illustrate Resilience Metrics

a given network. In other words, we assume that the network topology and the set of services

needed at each node are given, and the objective is to find the set of services to be provided by

each node so as to achieve a desired degree of node or edge resilience. In the absence of cost

considerations, such problems can be solved trivially by having all the services at each node. In

general, such solutions are economically infeasible. Moreover, some of the nodes in the network

may not have the computational resources needed to support a certain service. Therefore, we

assume that there is a cost associated with placing services at nodes and that the total cost of

placing the services must be minimized. We can now provide a precise formulation of the design

problems considered in this paper.

Design for Edge Resilience (DER)

Instance: An undirected graph G(V, E), with V = {v1, v2, . . . , vn}, a set S = {s1, s2, . . . , sp} of

services, a set N(vi) ⊆ S for each node vi ∈ V , an n × p cost matrix C = [cij], where cij ≥ 0 is a

real number that denotes the cost of placing service pj at node vi , 1 ≤ i ≤ n and 1 ≤ j ≤ p, and

integer K.

Requirement: For each node vi ∈ V , compute a set A(vi) ⊆ S of services to be placed at vi , such

that the edge resilience of the resulting service-oriented network is at least K and the total cost of
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placing the services is minimized.

A solution to the DER problem may place a service sj in at a node vi when sj ∈ N(vi). In such

a case, the sets A(vi) and N(vi) for node vi are no longer disjoint. To ensure that the two sets

remain disjoint, one can modify the set N(vi) into a new need set N ′(vi) by deleting the services

in N(vi) ∩ A(vi).

The formulation of the Design for Node Resilience (DNR) problem is similar, except that the

parameter K represents the required level of node resilience.

In Section 4, we present polynomial algorithms for the DER and DNR problems, assuming that

the value of K is 1. Even for K = 1, the algorithms involve careful analyses of certain types of

decompositions of undirected graphs. For larger values of node and edge resilience parameters,

developing properties of appropriate graph decompositions appears to be a nontrivial task. So,

we leave the design problems for higher resilience values as directions for future work.

3 Algorithms for Analyzing a Given Network

3.1 An Algorithm for Computing Edge Resilience

In this section, we present our algorithm for computing the edge resilience of a given service-

oriented network. We begin with some definitions.

Let G(V, E) denote the underlying graph of the given network. We use the term subnetwork

to mean a connected subgraph of G. (Subnetworks may contain just a single node.) For each node

v in a subnetwork H, the sets A(v) and N(v) are the same as those in G. For any subnetwork H

and any service sj ∈ S, we say that H is deficient with respect to sj if there is a node in H that

needs sj and no node in H provides sj. Thus, a subnetwork H is deficient4 if there is a service sj

with respect to which H is deficient.

Definition 3.1 Let G(V, E) denote the underlying graph of a service-oriented network. Let S denote the set
of all services available in the network.

(a) Given a service sj ∈ S, a set of edges Q ⊆ E is called a deficiency inducing edge (DIE) set for G with

respect to service sj if at least one of the connected components of the graph G ′(V, E−Q) is deficient

with respect to sj.

(b) A set of edges Q ⊆ E is a deficiency inducing edge set for G if at least one of the connected components
of the graph G ′(V, E − Q) is deficient.

A direct consequence of the above definitions is that if Q∗ is a DIE set of minimum cardinality

for G, then the edge resilience of G is equal to |Q∗| − 1. Therefore, we focus on computing |Q∗|.

Our approach for finding |Q∗| relies on the following observation.
4The definition of a deficient subnetwork was presented in Section 2.1.
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Observation 3.1 Let G(V, E) denote the underlying graph of a service-oriented network. Let S denote the
set of all services available in the network. For each service sj ∈ S, let σj denote the minimum cardinality of
a DIE set for G with respect to service sj. Let σ∗ denote the minimum cardinality of a DIE set for G. Then,
σ∗ = min {σj : 1 ≤ j ≤ |S| }.

The above observation points out that the cardinality of a smallest DIE set for G can be com-

puted by considering each service separately. We now show that for any service sj, the problem

of computing a minimum cardinality DIE set with respect to sj can be solved by a transformation

to the problem of computing minimum weight edge cutsets in undirected graphs. The relevant

definitions are given below.

Definition 3.2 Let G(V, E) be an undirected graph with a nonnegative weight w(e) for each edge e ∈ E.
Let s and t be two distinct vertices in V . An s-t edge cutset for G is a subset E ′ ⊆ E such that in the
graph G ′(V, E − E ′), there is no path between s and t. A minimum weight s-t edge cutset for G is an
edge cutset whose total weight is minimum.

The following well known result shows that minimum weight edge cutsets can be found effi-

ciently (see for example [SW97]).

Theorem 3.1 Given an undirected graph G(V, E) with a nonnegative weight w(e) for each edge e ∈

E and two distinct vertices s and t in V , a minimum weight s-t edge cutset for G can be computed in
O(|E| + |V | log |V |) time.

We now explain how an algorithm for the minimum weight s-t edge cutset problem can be

used to solve the problem of computing a minimum cardinality DIE set for a given service sj. We

need the following definition.

Definition 3.3 Let G(V, E) be the given service-oriented network and let sj be a given service. Let Pj ⊆ V

denote the set of nodes that provide service sj. The auxiliary graph Gj(Vj, Ej) for sj is an undirected edge
weighted graph constructed as follows.

(a) The node set Vj = V ∪ {s}, where s is a new node that does not appear in V .

(b) The edge set Ej = E1
j ∪ E2

j , where

(i) E1
j = E − {{x, y} : x and y are both in Pj} and

(ii) E2
j = {{s, y} : y ∈ Pj}.

(c) The weight of each edge in E1
j is 1 and the weight of each edge in E2

j is ∞.

As an example, the auxiliary graph of the network of Figure 1 with respect to service s1 is

shown in Figure 2. The usefulness of the auxiliary graph is shown in the following lemma.
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v1 v3

v4

v5

v7

v8

v2 v6s

Note: Nodes v1, v2 and v3 provide service s1. Each dotted edge has weight = ∞; other edges have
a weight of 1.

Figure 2: Auxiliary Graph with respect to Service s1 of the Network in Figure 1

Lemma 3.1 Let G(V, E) be the given service-oriented network and let sj be a given service. Suppose
Gj(Vj, Ej) denotes the auxiliary graph for sj and v is a node of G that needs service sj.

(a) If there is a set Ev ⊆ E such that there is no path in G ′(V, E−Ev) between v and any node that provides
service sj, then Gj has an s-v edge cutset of weight at most |Ev|.

(b) For any finite integer α, if Gj has an s-v edge cutset of weight α, then there is a set Ev ⊆ E such that

|Ev| = α, and there is no path in G ′(V, E − Ev) between v and any node that provides service sj.

Proof:

Part (a): Suppose Ev is a set of edges such that there is no path in the graph G ′(V, E −Ev) between

v and any node that provides service sj. Let E1
v ⊆ Ev be the set of edges obtained by deleting from

Ev each edge {x, y} such that both x and y are nodes that provide service sj. Note that each edge

in E1
v is also an edge in Gj and the total weight of the edges in E1

v is at most |Ev|. Using the fact that

there is no path in G ′(V, E−Ev) between v and any node that provides service sj, it can be verified

that E1
v is an s-v edge cutset for Gj.

Part (b): For some finite α, suppose Qv ⊆ Ej is an s-v edge cutset with weight α for Gj. Since

α is finite, Qv cannot contain any edge incident on node s. Thus, each edge in Qv is also in

G(V, E). Using the fact that Qv is an s-v edge cutset for Gj, it can be verified that there is no path

in G ′(V, E − Qv) between v and any node that provides service sj. This completes the proof.

The following lemma is a direct consequence of Lemma 3.1.

Lemma 3.2 Let G(V, E) be the given service-oriented network and let sj be a given service. Let Gj(Vj, Ej)

denote the auxiliary graph for sj. For any node v ∈ V , the minimum number of edges to be deleted from G
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Input: A service-oriented network G(V, E), the set S of all services, the sets A(v) and N(v) for each
node v ∈ V .

Requirement: Find the edge resilience of G.

Algorithm:

1. for each service sj ∈ S do

(a) Construct auxiliary graph Gj(Vj, Ej) for service sj.

(b) Find the set Dj ⊆ Vj of the demand points for service sj (i.e., the set of nodes that need
service sj).

(c) for each node v ∈ Dj do

Compute αv,j , the minimum weight of an s-v edge cutset in Gj.

(d) Let σj = min {αv,j : v ∈ Dj }.

2. Edge resilience of G = min {σj : sj ∈ S} − 1.

Figure 3: Algorithm for Computing Edge Resilience

so that there is no path between v and any node that provides service sj is equal to the weight of a minimum

weight s-v edge cutset in Gj.

From Lemma 3.2, it follows that the cardinality of a minimum DIE set with respect to a service

sj can be obtained by computing the minimum weight edge cutset in the auxiliary graph Gj for

each pair s-v, where v is a node that needs service sj. Once we find the cardinality of a minimum

DIE set with respect to each service sj, the edge resilience of the given network G can be found

by taking the minimum over all services (Lemma 3.1). These observations lead to the algorithm

shown in Figure 3 for computing the edge resilience of a given service-oriented network.

We now estimate the running time of the algorithm. Suppose the given network has n nodes,

m edges and a total of p services. The running time of the algorithm in Figure 3 is dominated by

the minimum weight edge cutset computations. For each service sj, the algorithm uses O(n) cutset

computations. So, the total number of such computations is O(pn). Since each cutset computation

can be done in O(m +n log n) time (Theorem 3.1), the running time of the algorithm is O(pn(m +

n log n)). The following theorem summarizes the above discussion.

Theorem 3.2 Given a service-oriented network G(V, E) and the set of service S, the edge resilience of the
network can be computed in O(pn(m + n log n)) time, where n = |V |, m = |E| and p = |S|.
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3.2 An Algorithm for Computing Node Resilience

Our algorithm for computing the node resilience of a service-oriented network follows the same

approach as that of edge resilience. The main difference is that we need to work with node cutsets

instead of edge cutsets.

When a subset X of nodes is deleted from a graph G(V, E), each edge incident on a node in X

is also deleted. Keeping this in mind, it is straightforward to modify the definition of a deficiency

inducing edge (DIE) set to obtain the definition of a deficiency inducing node (DIN) set.

Definition 3.4 Let G(V, E) denote the underlying graph of a service-oriented network. Let S denote the set
of all services available in the network. For any subset of nodes X, let GX(V − X, EX) denote the subgraph
of G obtained by deleting the nodes in X.

(a) Given a service sj ∈ S, a set of nodes X ⊆ V is called a deficiency inducing node (DIN) set for

G with respect to service sj if at least one of the connected components of the graph GX(V −X, EX)

is deficient with respect to sj.

(b) A set of nodes X ⊆ E is a deficiency inducing node set for G if at least one of the connected compo-
nents of the graph GX(V − X, EX) is deficient.

As in the case of edge resilience, it can be seen that a minimum cardinality DIN set for G can be

computed by considering each service separately. To compute that value, we use a transformation

to the problem of computing minimum weight node cutsets in graphs. The following definition is

the node cutset analog of Definition 3.2.

Definition 3.5 Let G(V, E) be an undirected graph with a nonnegative weight w(v) for each node v ∈ V .
Let s and t be two distinct vertices in V such that {s, t} 6∈ E. An s-t node cutset for G is a subset
V ′ ⊆ V − {s, t} such that when the nodes in V ′ are deleted from G, there is no path between s and t. A

minimum weight s-t node cutset for G is a node cutset whose total weight is minimum.

As indicated by the following result from [Ev79], minimum weight node cutsets can be found

efficiently.

Theorem 3.3 Given an undirected graph G(V, E) with a nonnegative weight w(v) for each node v ∈ V

and two distinct vertices s and t in V such that {s, t} 6∈ E, a minimum weight s-t node cutset for G can be
computed in O(|E| |V |1/2) time.

The definition of the auxiliary graph used for computing node resilience is the same as that

given in Definition 3.3, except that edge weights are not used, and the weight of each node is

1. The usefulness of the auxiliary graph is indicated in the following lemma, whose proof is

analogous to that of Lemma 3.2.

10



Input: A service-oriented network G(V, E), the set S of all services, the sets A(v) and N(v) for each
node v ∈ V .

Requirement: Find the node resilience of G.

Algorithm:

1. for each service sj ∈ S do

(a) Construct auxiliary graph (with node weights instead of edge weights) Gj(Vj, Ej) for
service sj.

(b) Compute Dj ⊆ Vj, the set of demand points for service sj.

(c) for each node v ∈ Dj do

Compute γv,j , the minimum weight of an s-v node cutset in Gj.

(d) Let Γj = min {γv,j : v ∈ Dj }.

2. Node resilience of G = min {Γj : sj ∈ S} − 1.

Figure 4: Algorithm for Computing Node Resilience

Lemma 3.3 Let G(V, E) be the given service-oriented network and let sj be a given service. Let Gj(Vj, Ej)

denote the auxiliary graph (with node weights) for sj. For any node v ∈ V , the minimum number of nodes
to be deleted from G so that there is no path between v and any node that provides service sj is equal to the
weight of a minimum weight s-v node cutset in Gj.

The rest of the computation is similar to that of edge resilience. The resulting algorithm for

computing node resilience is shown in Figure 4.

Suppose the given network has n nodes, m edges and a total of p services. The running time

of the algorithm in Figure 4 is also dominated by the time for node cutset computations. The

total number of node cutset computations is O(pn). Since each cutset computation can be done in

O(mn1/2) time (Theorem 3.3), the running time of the algorithm is O(pmn3/2)). The following

theorem summarizes the above discussion.

Theorem 3.4 Given a service-oriented network G(V, E) and the set of service S, the node resilience of the
network can be computed in O(pmn3/2) time, where n = |V |, m = |E| and p = |S|.

4 Algorithms for Designing Resilient Networks

4.1 Preliminary Definitions

As mentioned in Section 2.2, the design problem for 1-node or 1-edge resilience assumes that we

are given the underlying graph G(V, E), and for each node vi ∈ V , the set N(vi) of services needed
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at vi. In addition, a nonnegative cost matrix C = [cij], where cij is the cost of placing service sj at

node vi is also given. The goal is to select a set of services to be placed at each node so that the

resulting network has the required level of edge or node resilience, and the total cost of placing

the services is minimized.

We saw in Section 3 that the analysis problems for edge and node resilience can be solved by

considering each service separately. This idea extends to the design problems as well since the

placement of one service has no impact on the placement of other services. So, our approach for

solving the design problems also considers one service at a time.

Consider any service sj. Recall that each node vi such that sj ∈ N(vi) is a demand point for

sj. Each node at which service sj is placed is called a service point. A set of service points for sj

is called a placement for sj. Given a connected graph G(V, E) and a placement P for service sj, we

say that the placement is 1-edge-resilient with respect to service sj if for every edge e ∈ E, the

graph G ′(V, E − {e}) contains a path from each demand point for sj to a service point for sj. The

definition of a 1-node-resilient placement can be given in a similar manner. Thus, an equivalent

way of posing the design problems is the following: find a placement for each service so that

the resulting service-oriented network is 1-edge-resilient (or 1-node-resilient) and the total cost of

placement is minimized. This formulation is used in the remainder of this paper.

The next two subsections consider the design problem for 1-edge resilience and 1-node re-

silience respectively. For reasons of space, we will assume uniform cost values for services in

this version; that is, we assume that cij = 1 for all i and j. Our algorithms can be extended to

nonuniform cost values. These extensions will be included in a longer version of this paper.

4.2 Designing a 1-Edge-Resilient Network

In this section, we develop our algorithm for the design problem for 1-edge resilience. As men-

tioned above, each service can be considered separately in solving this problem. So, we will focus

our attention on one service, say sj. We say that a placement P for service sj is optimal if P pro-

vides 1-edge-resilience with respect to sj, and |P| is the smallest among all placements which have

the resilience property.

To develop our algorithm for this problem, we recall a standard definition from graph theory

[We96].

Definition 4.1 Let G(V, E) be a connected undirected graph. A bridge of G is an edge {x, y} whose removal
disconnects G. If G has no bridges, then G is called a bridgeless graph.

The following is a well known result in graph theory [We96].

Lemma 4.1 Let G(V, E) be a connected undirected graph. Suppose G has b bridges given by E ′ =

{e1, e2, . . . , eb}. Then, the graph G ′(V, E − E ′) has exactly b + 1 connected components and each of these
components is a bridgeless graph.

12



The bridgeless components (BLCs) of the underlying graph G(V, E) play an important role in

solving the design problem. To show this connection, we define another auxiliary graph for G as

follows.

Definition 4.2 Let G(V, E) be a connected undirected graph and let E ′ = {e1, e2, . . . , eb} denote the set of

bridges of G. The BLC graph of G, denoted by GB(VB, EB), is defined as follows.

(a) Each node of VB corresponds to a BLC of G.

(b) For nodes x and y in VB, the edge {x, y} is in EB if and only if there is a bridge in G that joins a node
in the BLC corresponding to x to a node in the BLC corresponding to y.

Intuitively, the BLC graph of G is constructed from G by collapsing each BLC of G into a single

super node; the edges of the BLC graph are in one-to-one correspondence with the bridges of G.

Example: The service-oriented network of Figure 1 has one bridge, namely the edge {v3, v5}. One

bridgeless component of G is formed by the node set {v1, v2, v3, v4} and the other is formed by

{v5, v6, v7, v8}. The BLC graph corresponding to this network has two nodes joined by a single

edge.

The following is an easy observation concerning the BLC graph of a connected graph G.

Observation 4.1 Suppose G is a connected undirected graph. The BLC graph of G is a tree.

We need some additional definitions to point out the role played by the BLC graph in solving

the 1-edge-resilient design problem. It should be noted that the following definitions are all with

respect to the service sj under consideration.

Definition 4.3 Let G(V, E) be a connected graph and let GB denote the BLC graph of G. Let sj be a service.

(a) A demand component of G is a BLC of G that has at least one demand point for sj.

(b) The demand subgraph G
j
D of G consists of nodes vH corresponding to the demand components of G,

and all edges and nodes of GB that lie along some path connecting two such nodes.

Since the BLC graph GB is a tree (Observation 4.1), the demand subgraph G
j
D is a subtree

of GB. We call each leaf of G
j
D (i.e., a node of degree 1 in G

j
D) a demand leaf. Each BLC of G

corresponding to a leaf of G
j
D is called a demand leaf component.

The importance of demand leaf components of G in finding an optimal placements is shown

in the following lemmas.

Lemma 4.2 Let G be a connected graph. Let GB denote the BLC graph of G, and let G
j
D denote the demand

subgraph of GB for service sj. Let δ denote the number of demand leaves of G
j
D. If P∗ denote an optimal

placement for sj, then |P∗ | ≥ δ.
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Proof: If δ = 1, the result follows immediately. For δ ≥ 2, we prove the result by contradiction.

Suppose |P∗| < δ. For each demand leaf vH of G
j
D, let Π(vH) denote the set of nodes in the largest

subtree of GB that contains vH, but does not contain any edges from G
j
D. Since |P∗ | < δ, there is a

demand leaf vH of G
j
D such that none of the BLCs corresponding to the nodes in Π(vH) contains

a service point for sj. Since vH is a leaf of G
j
D, the graph G

j
D contains only one edge e incident on

vH. Let this edge e = {vH, vX} join node vH to node vX. Note that e corresponds to a bridge e ′ of G.

When e ′ is deleted from G, nodes in the BLC H of G corresponding to node vH of G
j
D have paths

only to nodes in the BLCs corresponding to nodes in Π(vH). Since there are no service points in

those BLCs, P∗ is not resilient to the failure of e ′. This is a contradiction, and Lemma 4.2 follows.

Lemma 4.3 Let G be a connected graph. Let GB denote the BLC graph of G, and let G
j
D denote the demand

subgraph of GB for service sj. Let P be a placement for sj obtained by choosing an arbitrary node from each
demand leaf component of G. Then, P is 1-edge-resilient.

Proof: The chosen placement P has one node from each of the demand leaf component of G.

Since every node in G
j
D has a path to a leaf node, G contains a path from each demand point to a

service point for sj. Thus, we can complete the proof of the lemma by showing that this property

continues to hold even after deleting any single edge of G.

If G
j
D has only one node, say vH, then the proof is trivial since the corresponding component H

of G is bridgeless. So, for the remainder of this proof, we assume that G
j
D has two or more nodes.

Consider the deletion of any edge e of G. There are three cases to consider.

Case 1: Edge e is not a bridge of G. In this case, deleting e does not disconnect G. Thus, a path

from every demand point to a service point for sj continues to exist even after e is deleted.

Case 2: Edge e is a bridge of G, but does not correspond to an edge of G
j
D. Even in this case, the

paths from the demand points to the service points for sj continue to exist after e is deleted.

Case 3: Edge e is a bridge of G and corresponds to an edge e ′ of G
j
D. Let X and Y denote the two

BLCs of G which are joined by e. Let vX and vY denote the nodes corresponding to X and Y in G
j
D,

so that the edge e ′ in G
j
D joins nodes vX and vY . Since G

j
D is a tree, deleting e ′ produces only two

subtrees. Further, each resulting subtree has at least one leaf node, and the BLC corresponding to

each such leaf node has a service point for sj. Therefore, the deletion of e from G does not create

any component that is deficient with respect to sj. This completes the proof of Lemma 4.3.

It follows from Lemmas 4.2 and 4.3 that an optimal placement for service sj can be found by

choosing an arbitrary node from each demand leaf component of G. When this process is repeated

for each service, we obtain an optimal placement that achieves 1-edge-resilience. The steps of the

resulting algorithm are shown in Figure 5.

We now analyze the running time of the algorithm in Figure 5. As in Section 3, let |V | = n,

|E| = m and |S| = p. Finding the BLCs of G can be done in O(m + n) time [CLRS01]. Then,
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Input: A connected graph G(V, E), the set S of all services, the set N(vi) for each node vi ∈ V .

Requirement: For each service sj, find a service point set Pj (i.e., the subset of V at which service
sj will be placed) so that the resulting network is 1-edge-resilient and |Pj| is the smallest among all
placements that provide 1-edge-resilience.

Algorithm:

1. Find the bridgeless components (BLCs) of G and construct the BLC graph GB of G.

2. for each service sj ∈ S do

(a) Compute the demand point set Dj for sj.

(b) Initialize service point set Pj to ∅.

(c) Construct the demand subgraph G
j
D and find its leaf nodes.

(d) for each leaf v of G
j
D do

Choose an arbitrary node w from the BLC of G corresponding to v, and add w to Pj.

3. Output the sets Pj, 1 ≤ j ≤ |S|.

Figure 5: Algorithm for Designing a 1-Edge-Resilient Network

constructing the BLC graph GB can be done in O(n) time, since GB is a tree. The time used to find

the placement for each service sj can be estimated as follows. Assuming that the set N(vi) for each

node vi is stored as a bit vector of length p, the set Dj of demand points for sj can be found in

O(n) time. Constructing the demand subgraph G
j
D and choosing a node from each demand leaf

component of G can also be done in O(n) time. Thus, the time spent in finding a placement for

each service is O(n). Hence, the time used to find placements for all services is O(np). Therefore,

the overall running time of the algorithm is O(m + np). The following theorem summarizes the

main result of this section.

Theorem 4.1 Given a connected graph G(V, E), the set of services S and the set N(vi) for each vi ∈ V , the
design problem for 1-edge-resilience under uniform service costs can be solved in O(m + np) time, where
n = |V |, m = |E| and p = |S|.

4.3 Designing a 1-Node-Resilient Network

We now address the problem of computing an optimal placement for achieving 1-node-resilience.

The approach is similar to that of the design problem for 1-edge-resilience. We start with some

standard graph theoretic definitions [We96].

Definition 4.4 Let G(V, E) be a connected undirected graph.

(a) A node v ∈ V is a cut point (or articulation point) if the removal of v disconnects G.
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(b) A block is maximal subgraph G ′ of G such that G ′ does not have a cut point.

Example: Consider the graph G(V, E) shown in Figure 1. It has two cut points, namely nodes v3

and v5. G has three blocks: the subgraph induced on the set {v1, v2, v3, v4}, the edge {v3, v5} and the

subgraph induced on the set {v5, v6, v7, v8}.

Definition 4.5 Let G(V, E) be a connected undirected graph. The block-cut point graph (BC graph) of

G, denoted by GB(VB, EB), is the bipartite graph defined as follows.

(a) VB has one node corresponding to each block and one node corresponding to each cut point of G.

(b) Each edge {x, y} in EB joins a block node x to a cut point y if the block corresponding to x contains the
cut point node corresponding to y.

The following is a known result about blocks and block-cut point graphs [We96].

Lemma 4.4 Let G(V, E) be a connected undirected graph.

(a) Each pair of blocks of G share at most one node, and that node is a cutpoint.

(b) The BC graph of G is a tree in which each leaf node corresponds to a block of G.

As before, we focus on obtaining an optimal placement for one service sj. The role of the

BC graph of G in the node resilience design problem is similar to that of BLC graph in the edge

resilience design problem. To explain this, we need a few more definitions. A node v of G is an

interior demand point, if v is a demand point (for service sj) and v is not a cut point. Note that

each interior demand point appears in only one block of G.

Definition 4.6 Let G(V, E) be a connected undirected graph and let GB denote the BC graph of G. Consider
a service sj.

(a) The demand subgraph of G with respect to service sj, denoted by G
j
D, is the subgraph of GB consisting

of nodes that correspond to blocks of G containing an interior demand point, cut nodes that are also
demand points and all edges and nodes of GB that lie along some path connecting two such nodes.

(b) The pruned demand subgraph of G with respect to service sj, denoted by G
j
PD, is the subgraph of

G
j
D, constructed as follows. If G

j
D consists of a single node, then G

j
PD is identical to G

j
D. Otherwise,

G
j
PD is constructed by removing from G

j
D each leaf node that is a cut point.

(c) A demand point v of G is a generalized interior demand point if v does not have a corresponding
cut point node in G

j
PD.

Since the BC graph GB of G is a tree (Lemma 4.4), G
j
D and G

j
PD are subtrees of GB. The follow-

ing lemma shows the relationship between an optimal 1-node-resilient placement for G and the

pruned demand graph G
j
PD.
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Lemma 4.5 Let G(V, E) be a connected undirected graph and let GB denote the BC graph of G. Let G
j
PD

denote the pruned demand subgraph of G with respect to service sj. Let P∗ be an optimal placement for sj.

(1) Suppose G
j
PD consists of a single node.

(a) If G has only one demand point for sj, then |P∗ | = 1.

(b) If G has two or more demand points for sj, then |P∗| = 2.

(2) Suppose G
j
PD consists of two or more nodes. Let δ denote the number of leaves of G

j
PD. Then, |P∗ | = δ.

Proof sketch: Below, we will indicate how a placement P is constructed. The proof that the place-

ment is optimal and that it provides 1-node-resilience can be given in a manner similar to the

proofs of Lemmas 4.2 and 4.3. It is omitted in this version due to lack of space.

Suppose G
j
PD consists of a single node. There are two possibilities here, as indicated in the

statement of the lemma. If G has only one demand point v for service sj, then P consists of just the

node v. If G has two or more demand points, then P consists of two arbitrary nodes from G.

Suppose G
j
PD consists of two or more nodes. In this case, we identify the blocks of G corre-

sponding to the leaves of G
j
PD. Placement P is obtained by choosing from each such block H, an

arbitrary generalized interior demand point.

An algorithm for finding an optimal placement for 1-node-resilience can be constructed from

the proof sketch given for Lemma 4.5. The steps of the resulting algorithm are shown in Figure 6.

To estimate the running time of the algorithm in Figure 6, let n = |V |, m = |E| and let p = |S|.

The blocks and cut points of a connected graph G(V, E) can be found in O(|V |+ |E|) time [CLRS01].

Thus, the BC graph GB of G can be constructed in O(n + m) time. Consider any service sj. Using

the fact that the pruned demand subgraph G
j
PD is a tree, it can be seen that an optimal placement

for each service can be found in O(n) time. Hence, the time over all services is O(pn). Therefore,

the overall running time of the algorithm is O(pn + m). The following theorem summarizes the

above discussion.

Theorem 4.2 Given a connected graph G(V, E), the set of services S and the set N(vi) for each vi ∈ V , the
design problem for 1-node-resilience under uniform service costs can be solved in O(m + np) time, where

n = |V |, m = |E| and p = |S|.

5 Concluding Remarks

We identified some resilience metrics for service-oriented networks. These metrics take into ac-

count both the underlying topology of the network and the manner in which services are dis-

tributed over the network. We presented polynomial algorithms for determining the edge and
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Input: A connected graph G(V, E), the set S of all services, the set N(vi) for each node vi ∈ V .

Requirement: For each service sj, find a service point set Pj so that the resulting network is
1-node-resilient and |Pj| is the smallest among all placements that provide 1-node-resilience.

Algorithm:

1. Find the cut points and blocks of G and construct the BC graph GB.

2. for each service sj ∈ S do

(a) Compute the demand point set Dj for sj.

(b) Construct the pruned demand subgraph G
j
PD.

(c) Construct the service point set Pj by considering the following cases.

Case 1: G
j
PD has only one node.

If G has only one demand point v for sj, then let Pj = {v}. If G has two or more
demand points for sj, choose any nodes x and y of G, and let let Pj = {x, y}.

Case 2: G
j
PD has two or more nodes.

(i) Find the leaf nodes of of G
j
PD and the corresponding leaf blocks of G.

(ii) for each leaf block H of G do
Choose an arbitrary generalized interior demand point x of H and
add x to Pj.

3. Output the sets Pj, 1 ≤ j ≤ |S|.

Figure 6: Algorithm for Designing a 1-Node-Resilient Network

node resilience of a given network. We also presented efficient algorithms for optimally dis-

tributing services over a given network so that the resulting service-oriented network achieves

1-edge-resilience or 1-node-resilience.

We close by pointing out some directions for future research. First, it is of interest to investigate

whether there are asymptotically faster algorithms for determining edge and node resilience. Sec-

ond, it would be useful to study the design problems for edge and node resilience values larger

than one. Third, other versions of design problems (e.g. adding edges of minimum cost to en-

hance edge or node resilience) can also be studied. Finally, it would also be of interest to identify

additional resilience metrics for service-oriented networks and study the corresponding analysis

and design problems.
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