CSI 503 – Data Structures and Algorithms
Breadth-First and Depth-First Search Methods

(a) Pseudocode for Breadth-First Search

BFS(G, s) // G is the graph and s is the source vertex.

1. for each u \in V - \{s\} do
 Color[u] = white; \(d[u] = \infty\); \(\pi[u] = \text{NULL}\).

2. Color[s] = gray; \(d[s] = 0\); \(\pi[s] = \text{NULL}\).

3. Initialize Q to contain only vertex s.

4. while (Q is not empty) do
 (a) u = head[Q].
 (b) for each v \in Adj[u] do
 if (Color[v] = white) then
 Color[v] = gray; \(d[v] = d[u] + 1\); \(\pi[v] = u\).
 Enqueue(Q, v).
 (c) Dequeue(Q). // This removes u from Q.
 (d) Color[u] = black.

PRINT-Path(g, s, v) // Prints the path in the BFS tree from s to v.

Idea: Follow the parent pointers from v to s; recursion allows us to print the path in the right order.

1. if (v = s)
 then print s
 else
 if (\(\pi[v] = \text{NULL}\))
 then Print “No path from s to v”.
 else
 PRINT-Path(G, s, \(\pi[v]\)).
 Print v.
(b) Pseudocode for Depth-First Search

DFS(G) // Depth-first search of graph G(V, E).

Note: Procedure DFS uses procedure DFS-Visit described below.

1. for each vertex $u \in V$ do
 \[\text{Color}[u] = \text{white}; \quad \pi[u] = \text{NULL}. \]
2. time = 0. // Note: time is a global variable.
3. for each vertex $u \in V$ do
 \[\text{if } (\text{Color}[u] = \text{white}) \text{ then} \]
 \[\text{DFS-Visit}(u). \]

DFS-Visit(u)

1. Color[u] = gray; time = time+1; $d[u]$ = time. // u has just been discovered.
2. for each vertex $v \in \text{Adj}[u]$ do (Edge $\{u, v\}$ is explored.)
 \[\text{if } (\text{Color}[v] = \text{white}) \text{ then} \]
 \[\pi[v] = u; \quad \text{DFS-Visit}(v). \]
3. Color[u] = black. // Vertex u is finished.
4. time = time + 1; $f[u]$ = time.