Note: This exam has 5 questions for a total of 100 points. Answer all questions. Write all your answers on the blue books.

Question I (25 points)

Note: The Master Theorem for recurrences is given on page 3 of this examination.

(a) Use the Master Theorem to find the asymptotic solution to the following recurrence:

\[T(n) = T(\lceil 3n/4 \rceil) + 7n \]

Show work. (15 points)

(b) Find the largest integer \(a \) such that the asymptotic solution to the recurrence

\[T(n) = aT(\lfloor n/3 \rfloor) + 2n^2 \]

is \(T(n) = O(n^2) \). Be sure to indicate how you arrived at your answer. (10 points)

Question II (20 points total)

(a) Let \(S = \{1, 2, \ldots, n\} \). We construct a subset \(S' \) of \(S \) using the following random experiment. \(S' \) is initially empty. For each element \(i \) of \(S \), \(1 \leq i \leq n \), we toss a fair coin and add element \(i \) to \(S' \) only if the result of the toss is HEAD. Find the expected size of \(S' \). (8 points)

(b) Let \(A[1..n] \) be an array. Suppose we initialize each element of \(A \) with an integer value drawn uniformly randomly from the range \([1..n^4]\). Assume also that the random choices for the \(n \) elements are independent. Prove that the probability that the values in \(A \) are all distinct is at least \(1 - \frac{1}{2n^2} \). (12 points)

Question III (20 points total)

For both parts of this question, assume that array \(A \) is a MAX-HEAP with \(n \geq 3 \) elements. In your answers to this question, you may use, if necessary, any of the standard MAX-HEAP operations, namely MAX-HEAPIFY, HEAP-MAXIMUM, MAX-HEAP-INSERT, HEAP-EXTRACT-MAX and HEAP-INCREASE-KEY. (For your reference, pseudocode descriptions of these operations appear on page 4 of this examination. In your answers, there is no need to show the pseudocode for these standard operations.)

(a) We want to implement a new operation called SECOND-MAX on \(A \). This operation simply returns the second largest value stored in the heap without modifying the heap. We want the operation to run in \(O(1) \) time in the worst-case. Show the pseudocode for implementing the operation and indicate why the running time is \(O(1) \). (8 points)

(over)
We want to implement a new operation called EXTRACT-SECOND-MAX on \(A \). This operation removes and returns the second largest value stored in the heap. We want this operation to run in \(O(\log n) \) time in the worst-case. Show the pseudocode for implementing the operation and indicate why the running time is \(O(\log n) \). (12 points)

Question IV (20 points total)

Note: Outlines of \textbf{Partition} and \textbf{Quicksort} are given on page 3 of this examination.

(a) Suppose we have an array \(A[1..n] \) which has been initialized so that \(A[i] = x_i, 1 \leq i \leq n \), where \(x_1 > x_2 > x_3 > \ldots > x_n \). What is the value returned by the call \texttt{Partition}(\(A, 1, n \))? Also, show the values in \(A \) after this call to \texttt{Partition}. (8 points)

(b) Given an array \(S \) containing \(n \) numbers, define a middle element of \(S \) to be a value \(x \in S \) such that at most \(\lceil n/2 \rceil \) values in \(S \) are less than or equal to \(x \) and at most \(\lceil n/2 \rceil \) are greater than or equal to \(x \). Suppose you are given an algorithm \(A \) which for any array \(S \) with \(t \) elements returns the index \(j \) of a middle element of \(S \) in \(O(t) \) time. (You can also assume that \(A \) does not modify the array \(S \).) Show how \textbf{Quicksort} can be modified using \(A \) so that the worst-case running time of the resulting version of \textbf{Quicksort} is \(O(n \log n) \).

Your answer must include the pseudocode for the modified version, a recurrence for the running time \(T(n) \) of the resulting algorithm and an explanation of why the solution to the recurrence is \(O(n \log n) \). (12 points)

Hint: Use Algorithm \(A \) to modify the \texttt{Partition} function.

Question V (15 points)

When we discussed the \(\Omega(n \log n) \) lower bound for comparison-based sorting algorithms, we assumed that each internal node of the tree has two outcomes labeled ‘\(\leq \)’ and ‘\(> \)’. Suppose we modify the decision tree for a sorting algorithm so that each internal node has three outcomes, namely ‘\(< \)’, ‘\(> \)’ and ‘\(= \)’. Prove that even under this modified form of decision trees, the \(\Omega(n \log n) \) lower bound holds for comparison-based sorting algorithms.
Statement of Master Theorem:

Let $a \geq 1$ and $b > 1$ be constants, let $f(n)$ be a function and let $T(n)$ be defined on nonnegative integers by the recurrence

$$T(n) = aT(n/b) + f(n)$$

where n/b may be either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$.

Part 1: If $f(n) = O(n^{\log_b a - \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.

Part 2: If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a \log n})$.

Part 3: If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some $\epsilon > 0$ and if $a f(n/b) \leq c f(n)$ for some constant $c < 1$ and for sufficiently large n, then $T(n) = \Theta(f(n))$.

Pseudocode for Quicksort and Partition

Quicksort (A, p, r) // Sort A[p .. r] into ascending order.

1. if (p < r)
 1.1 q = Partition(A, p, r)
 1.2 Quicksort(A, p, q-1)
 1.3 Quicksort(A, q+1, r)

Partition (A, p, r) // It is assumed that p <= r.

1. x = A[r]; i = p-1; // x is the pivot value.
2. for j = p to r-1 do
 if (A[j] <= x) {
 i = i + 1
 }
4. return i+1.
Pseudocode for Operations on a Max-Heap:

(a) Pseudocode for Heapify:

Heapify (A, i)
1. l = Left(i); r = Right(i)
2. if ((1 <= heap_size(A) and (A[l] > A[i]))
 then m = l else m = i
3. if ((r <= heap_size(A) and (A[r] > A[m])
 then m = r
4. if (m != i)
 then
 4.1 Exchange A[i] with A[m].
 4.2 Heapify(A,m)

(b) Pseudocode for Heap-Extract-Max:

Heap-Extract-Max(A)
1. if (heap_size[A] = 0) then print "Error: Heap underflow" and stop.
2. max = A[1]
4. heap_size[A] = heap_size[A]-1
5. Heapify(A,1)

(c) Pseudocode for Heap-Increase-Key:

Heap-Increase-Key(A, x, k) // The value of A[x] must be changed to k.
1. if (k < A[x])
 then print "Error: New key value smaller than current" and stop.
2. A[x] = k
3. while ((i > 1) and (A[Parent(i)] < A[i])) do
 3.1 Exchange A[i] and A[Parent(i)]
 3.2 i = Parent(i)

(d) Pseudocode for Heap-Insert:

Heap-Insert(A, k) // k : Key to be inserted.
1. heap_size[A] = heap_size[A] + 1
2. A[heap_size[A]] = -infinity
3. Heap-Increase-Key(A, heap-size[A], k)