CSI 402 – Lecture 3
(SIC and SIC/XE Assembly Languages)
SIC and SIC/XE Architectures

Ref: Chapter 1 and Appendix A of [Beck].

Details regarding SIC:

- Allows only integers and characters.
- Memory size = 2^{15} bytes. (Byte address: 15 bits).
- Word size = 3 bytes (or 24 bits).
- Characters: 1 byte (ASCII).
- Integers use 3 bytes; 2’s complement for negative values.
- Five registers (denoted by A, X, L, PC and SW).

Instruction Format:

```
     8  15
Opcode Address
```

Note: Here, x is the “index bit”.
(a) Examples of Load/Store Instructions: Here, m denotes a memory address.

- LDA m
- STA m
- STX m

(b) Examples of Arithmetic Instructions: Here, register A is always an operand. Also, the result is in A.

- ADD m
- DIV m

(c) Comparison Instruction:

- COMP m

Note: Compares the contents of A with the contents of the specified memory location; sets CC to indicate $>$, $=$ or $<$.
(d) Conditional Jump Instructions:

JLT m
JEQ m
JGT m

(e) Procedure call/return Instructions:

JSUB m
RSUB

(f) I/O Instructions:

RD d
WD d
TD d

Notes:

- Each I/O device has an 8-bit ID.
- I/O is done using register A one byte at a time.
Outline for I/O in SIC:

1. repeat
 Test device.
 until device is ready.

2. Read/write one byte.

Note: This method of I/O is called “Busy-Wait” or “Programmed” I/O.

Details regarding SIC/XE:

- Allows integers, characters and floating point values.
- Memory size = 2^{20} bytes. (Byte address: 20 bits).
- Word size = 3 bytes (or 24 bits).
- Four additional registers (denoted by B, S, T and F).
Floating point format:

```
  11 36
  s  exp  significand
```

Note: The 11-bit exponent (exp) is stored in Biased-1024 form.

Instruction Formats for SIC/XE:

- Addresses must be 20 bits long.
- Uses both relative addressing and extended addressing.
- Instructions may be 1, 2, 3 or 4 bytes long.
1-Byte format:

```
  8
 Opcode
```

Example: FLOAT

2-Byte format:

```
  8  4  4
 Opcode R1 R2
```

Examples:

- RMO S, T
- MULR S, T
Instruction Formats for SIC/XE (continued)

3-Byte format:

![3-Byte format diagram]

Notes:

- x – index bit (as before).
- Bits b and p specify **relative** addressing.
 - b = 1 and p = 0: Relative to B.
 - b = 0 and p = 1: Relative to PC.
 - b = 0 and p = 0: Direct address.
- In B-relative mode, displacement is treated as an unsigned integer.
- In PC-relative mode, displacement is treated as an integer in 2’s complement form.
3-Byte Format (continued)

- Bits i and n specify extended addressing modes.
 - $i = 1$ and $n = 0$: Immediate mode.
 - $i = 0$ and $n = 1$: Indirect mode.
 - $i = n$: Simple addressing.

- Bit e is always 0 for 3-byte instructions.

4-Byte format:

```
   Opcode  n  i  x  b  p  e   Address
```

Notes:

- Bits b and p are always 0. (Thus, 4-byte format does not allow relative addressing.)

- Bit e is always 1 (to distinguish between 3-byte and 4-byte instructions).
SIC/XE Instruction Set:

- Includes all SIC instructions.
- New instructions (e.g. LDB, STB).
- Floating point instructions (e.g. ADDF, MULF).
- Register-to-register instructions (e.g. ADDR, MULR).

Examples of Address Calculation: To be presented in class.

Program Examples: Handout 3.1.

Suggested Exercise: Example 2 of Handout 3.1 shows the SIC version of an assembly language program. Write the SIC/XE version of the program.
Brief discussion on MIPS, Pentium and SPARC.

Others from [Beck] left as reading assignment.

MIPS Architecture (Review):

- Used in SGI workstations.
- Load/store architecture; number of instructions is around 100 (RISC).
- Memory address = 32 bits; word size = 32 bits; processor can support both big endian and little endian ordering.
- Instruction length = 32 bits.
- Separate co-processors C0 (for exception handling) and C1 (floating point operations).
- 32 CPU registers for integer operations; each register is 32 bits long.
Review of MIPS (continued)

- 32-bit (single precision) and 64-bit (double precision) floating point registers are available; floating point representation based on IEEE Floating Point Standard (FPS).

- Simple addressing modes (immediate, base + displacement and PC-relative); load address (la) instruction to support indirect addressing.

- Supports all basic data types of C (int, char, float and double).

IA-32 Architecture (Intel):

- Started with Intel 80386 and has continued up to Itanium (64 bit CPU).

- Memory address = 32 bits; little endian; word size = 32 bits.

- 8 general purpose 32-bit registers (R0 through R7) and 8 floating point 64-bit registers (FP0 through FP7).
Instruction Pointer (PC) and Status Register (containing condition code).

More than 400 instructions; instruction lengths vary from 1 to 12 bytes (CISC).

A variety of addressing modes (e.g. immediate, direct, register, register indirect, base + displacement, base + index, etc).

Supports all basic data types of C. Also supports quad precision for floating point.

Separate floating point processor.
Sun SPARC Architecture

- Used in Sun workstations. (Designed in 1987 and has evolved to SuperSPARC, UltraSPARC and UltraSPARC-II.)

- Load/store architecture; Number of instructions is around 100 (RISC).

- Memory address = 64 bits; big endian; word size = 32 bits.

- Instruction length = 32 bits.

- 64-bit registers for integer operations.

- Has a “register file” consisting of 64 to 512 registers. Each procedure can use only a “window” of 32 registers.

- Windows of different procedures may overlap (to support parameter passing).
Register file of floating point registers.

Each floating point register is 32 bits long to provide for single precision IEEE FPS; registers are paired to support double precision.

Fewer addressing modes compared to IA-32 (e.g. immediate, register indirect + displacement, register indirect + index, etc).

Supports all basic data types of C.

Separate floating point processor.