A Simple Example for Function Pointers

Note: The purpose of this handout is to present a simple example to show how function pointers are used in a C program. This example consists of four functions called `main`, `compute`, `linear` and `quadratic`. One of the parameters of the `compute` function is a function pointer. Note that `main` calls `compute` twice. The first call passes `linear` as the function parameter. The second call passes `quadratic`.

```c
#include <stdio.h>

#define START_VAL 0
#define END_VAL 3
#define STEP_SIZE 1

/* Function prototypes. */
int linear (int x);
int quadratic (int x);

/* The first parameter of the following function is a */
/* pointer to a function. */
void compute(int (*f)(int x), int sval, int fval, int ssize);

int main(void) {
    /* In each call to function compute, the first parameter */
    /* is the name of a function. */
    compute(linear, START_VAL, END_VAL, STEP_SIZE);
    printf("\n");
    compute(quadratic, START_VAL, END_VAL, STEP_SIZE);

    return 0;
} /* End of main. */
```

(over)
void compute(int (*f)(int x), int sval, int fval, int ssize) {
 /* This function computes and prints the value of the function *f */
 /* for the values in the range [sval .. fval] using the step size */
 /* given by the parameter ssize. */
 int i, temp;
 for (i = sval; i <= fval; i += ssize) {
 temp = (*f)(i);
 printf("%d %d\n", i, temp);
 }
} /* End of compute. */

int linear (int x) {
 /* Computes and returns the value of a linear function */
 /* at the point given by the parameter x. */
 #define LCOEFF1 6
 #define LCOEFF2 5
 return (LCOEFF1 * x + LCOEFF2);
} /* End of linear. */

int quadratic (int x) {
 /* Computes and returns the value of a quadratic function */
 /* at the point given by the parameter x. */
 #define QCOEFF1 6
 #define QCOEFF2 3
 #define QCOEFF3 2
 return ((QCOEFF1 * x + QCOEFF2) * x + QCOEFF3);
} /* End of quadratic. */

Output:
0 5
1 11
2 17
3 23

0 2
1 11
2 32
3 65