Example of MAL Code for accessing a 2-Dimensional Array

We assume that the 2-dimensional array \(a \) is stored in row-major order. Variables \(i \) and \(j \) are stored in registers \$5 \) and \$6 \) respectively. Register \$7 \) is used for computing addresses and registers \$8 \) through \$12 \) are used for scratch work. It should be noted that the following code segment does not save/restore these registers.

C Segment

```c
int a[3][5]; int i, j;
for (i = 0; i < 3; i++)
    for (j = 0; j < 5; j++)
        a[i][j] = i * j;
```

MAL Segment

```mal
.data
a: .word 0:15  #Space for a.

.text
move $5, $0  #Set i = 0.
li $10, 3  #$10 has the no. of rows of a.
li $11, 5  #$11 has the no. of columns of a.
li $12, 4  #$12 has 4 (no. of bytes per int.)

iloop: bge $5, $10, end_iloop
move $6, $0  #Set j = 0.

jloop: bge $6, $11, end_jloop

#Calculate the address of a[i][j] in $7.
la $7, a  #$7 has the starting addr. of a.
move $8, $11
mul $8, $8, $12  #$8 has 4 * no. of columns.
mul $8, $8, $5  #$8 has 4 * no. of columns * i.
mul $9, $6, $12  #$9 has 4*j.
add $8, $8, $9  #$8 has the offset for a[i][j].
add $7, $7, $8  #$7 has the addr. of a[i][j].

#Compute i*j and store it in a[i][j].
mul $9, $5, $6  #$9 has i*j.
sw $9, 0($7)  #Store i*j in a[i][j].
addi $6, $6, 1  #j++
```

```mal
b jloop
```

```mal
end_jloop: addi $5, $5, 1  #i++
b iloop
```

```mal
end_iloop:
```