Current Accounts in Open Economies
Obstfeld and Rogoff, Chapter 2
1 Consumption with many periods

1.1 Finite horizon of T

- Optimization problem

 - maximize

 $$U_t = u(c_t) + \beta (c_{t+1}) + \beta^2 u(c_{t+2}) + ... + \beta^T u(c_{t+T}) \quad \beta < 1$$
subject to $T + 1$ flow budget constraints

$$CA_t = B_{t+1} - B_t = Y_t + rB_t - C_t - G_t - I_t$$

$$CA_{t+1} = B_{t+2} - B_{t+1} = Y_{t+1} + rB_{t+1} - C_{t+1} - G_{t+1} - I_{t+1}$$

...

$$CA_{t+T} = B_{t+T+1} - B_{t+T} = Y_{t+T} + rB_{t+T} - C_{t+T} - G_{t+T} - I_{t+T}$$

Present value budget constraint

* Add all current accounts, but retain individual bond terms from right-hand side (must be substituted out)
* Alternatively, subtract net foreign income to get trade balance

\[
B_{t+1} - (1 + r) B_t = TB_t = Y_t - C_t - G_t - I_t
\]

\[
B_{t+2} - (1 + r) B_{t+1} = TB_{t+1} = Y_{t+1} - C_{t+1} - G_{t+1} - I_{t+1}
\]

\[
\vdots
\]

\[
B_{t+T+1} - (1 + r) B_{t+T} = TB_{t+T} = Y_{t+T} - C_{t+T} - G_{t+T} - I_{t+T}
\]

* Multiply second line by \(\left(\frac{1}{1+r} \right) \), third by \(\left(\frac{1}{1+r} \right)^2 \), ending with multiplying final by \(\left(\frac{1}{1+r} \right)^T \) to take present values

* Sum present values of trade surpluses, noting that all terms with
bonds except first and last drop out

\[
\left(\frac{1}{1 + r} \right)^T B_{t+T+1} - (1 + r) B_t = \sum_{s=t}^{t+T} (Y_s - C_s - G_s - I_s) \left(\frac{1}{1 + r} \right)^{s-t}
\]

* Impose

\[
B_{t+T+1} = 0
\]

since no one would hold assets going into the end of the world, and no other country would let this country hold debt (because they would be holding assets)

\[
\sum_{s=t}^{t+T} (C_s + G_s + I_s) \left(\frac{1}{1 + r} \right)^{s-t} = (1 + r) B_t + \sum_{s=t}^{t+T} Y_s \left(\frac{1}{1 + r} \right)^{s-t}
\]

PV expenditure = net foreign assets + PV income
– Write utility substituting flow budget constraint for consumption

\[C_t = Y_t + rB_t - G_t - I_t - (B_{t+1} - B_t) \]

\[U_t = \sum_{s=t}^{t+T} \beta^{s-t} u \{(1 + r) B_s - B_{s+1} + A_s F(K_s) - (K_{s+1} - K_s) - G_s\} \]

– First order conditions (Euler equations)

* Bonds

\[\frac{u'(C_s)}{u'(C_{s+1})} = \beta (1 + r) \]

* Capital

\[\frac{u'(C_s)}{u'(C_{s+1})} = \beta \left[1 + A_{s+1} F'(K_{s+1}) \right] \]
* Together the two Euler equations imply

\[(1 + r) = 1 + A_{s+1}F' (K_{s+1})\]
1.2 Infinite Horizon

- Intertemporal budget constraint changes

 \[\lim_{T \to \infty} \left(\frac{1}{1 + r} \right)^T \left(B_{t+T+1} - (1 + r) B_t \right) \]

 \[= \sum_{s=t}^{\infty} (Y_s - C_s - G_s - I_s) \left(\frac{1}{1 + r} \right)^{s-t} \]

- impose

 \[\lim_{T \to \infty} \left(\frac{1}{1 + r} \right)^T B_{t+T+1} = 0 \]

 requiring that debt not grow faster than the interest rate
* combines No Ponzi Game Condition (NPG) requiring that present-value assets be non-negative in the limit

* with optimality condition whereby agents would not choose to forego consumption so that present-value assets could be positive in the limit

\[
\sum_{s=t}^{\infty} (C_s + G_s + I_s) \left(\frac{1}{1 + r} \right)^{s-t} = (1 + r) B_t + \sum_{s=t}^{\infty} Y_s \left(\frac{1}{1 + r} \right)^{s-t}
\]

PV expenditure = net foreign assets + PV income

- intertemporal budget constraint implies an upper bound on current debt since smallest present value of consumption is zero

\[
\sum_{s=t}^{\infty} (Y_s - G_s - I_s) \left(\frac{1}{1 + r} \right)^{s-t} \geq - (1 + r) B_t
\]
requiring that debt \[- (1 + r) B_t \] be less than the present value of net income (max country could repay if consumption were zero)

- Financial crisis
 - Either government or households want to borrow more than the upper bound on debt
 - Agents refuse to lend because they know the country cannot repay
 - Measure of debt burden
 * Since debt/GDP \(\left(\frac{B_s}{Y_s} \right) \) cannot grow forever, fix it, requiring
 \[
 B_{s+1} = B_s (1 + g),
 \]
 where \(g \) is rate of growth of output
From country flow budget constraint

\[B_{s+1} - B_s = gB_s = Y_s + rB_s - G_s - I_s - C_s = rB_s + TB_s \]

\[gB_s = rB_s + TB_s \]

\[(g - r) B_s = TB_s \]

yielding trade balance surplus necessary to keep debt/GDP fixed

Assume have debt so \(B_s < 0 \). Either reduction in \(g \) or increase in \(r \) implies must run larger trade balance surplus to keep debt/GDP from growing
• Consumption

 – Assumptions

 * Infinite horizon, requiring infinite-horizon intertemporal budget constraint

 * $\beta (1 + r) = 1$, requiring constant consumption from Euler equation

 – Solve for constant consumption from intertemporal budget constraint

\[
\sum_{s=t}^{\infty} (C_s + G_s + I_s) \left(\frac{1}{1 + r} \right)^{s-t} = (1 + r) B_t + \sum_{s=t}^{\infty} Y_s \left(\frac{1}{1 + r} \right)^{s-t}
\]
\[C \left(\frac{1 + r}{r} \right) = (1 + r) B_t + \sum_{s=t}^{\infty} (Y_s - G_s - I_s) \left(\frac{1}{1 + r} \right)^{s-t} \]

\[C' = \frac{r}{1 + r} \left[(1 + r) B_t + \sum_{s=t}^{\infty} (Y_s - G_s - I_s) \left(\frac{1}{1 + r} \right)^{s-t} \right] \]

- agent consumes the annuitized value of net wealth
- Benchmark consumption
 * \(G = I = 0 \)
 * \(Y = \bar{Y} \)

\[C = r B_t + \bar{Y} \]
Consumption which varies over time \((\beta (1 + r) \neq 1)\)

- CRRA utility

\[
u(C) = \frac{C^{1-1/\sigma}}{1 - 1/\sigma}
\]

- Euler equation simplifies to

\[
C_{s+1} = C_s \beta^\sigma (1 + r)^\sigma
\]

* Taking this forward

\[
C_{s+2} = C_{s+1} \beta^\sigma (1 + r)^\sigma = C_s [\beta^\sigma (1 + r)^\sigma]^2
\]
– Consumption term for present-value budget constraint

\[
\sum_{s=t}^{\infty} C_s \left(\frac{1}{1+r} \right)^{s-t} = C_t + C_t \beta^\sigma (1 + r)^{\sigma-1} + C_t \left[\beta^\sigma (1 + r)^{\sigma-1} \right]^2 + \ldots
\]

\[
= C_t \frac{1}{1 - \beta^\sigma (1 + r)^{\sigma-1}} \quad \text{for } \beta^\sigma (1 + r)^{\sigma-1} < 1
\]

– Define

\[\nu = 1 - \beta^\sigma (1 + r)^\sigma \]

* Substituting

\[1 - \beta^\sigma (1 + r)^{\sigma-1} = \frac{\nu}{1 + r} + \frac{r}{1 + r} = \frac{\nu + r}{1 + r} \]

\[
\sum_{s=t}^{\infty} C_s \left(\frac{1}{1+r} \right)^{s-t} = C_t \frac{1 + r}{\nu + r}
\]
Solving for consumption using IBC yields

\[C_t = \frac{\nu + r}{1 + r} \left[(1 + r) B_t + \sum_{s=t}^{\infty} (Y_s - G_s - I_s) \left(\frac{1}{1 + r} \right)^{s-t} \right] \]

* \(\beta (1 + r) = 1, \nu = 0 \), consumption path is flat (benchmark case)

* \(\beta (1 + r) > 1, \nu < 0 \), agent is patient, and consumption begins smaller than benchmark and grows forever (eat less than annuitized value and bonds increase)

* \(\beta (1 + r) < 1, \nu > 0 \), agent is impatient, and consumption begins larger than benchmark and shrinks forever (eat more than annuitized value and bonds decrease)
2 Current Account with Infinite Horizon

2.1 Perfect Foresight

- Useful representation when $\beta (1 + r) = 1$

Define permanent value of a variable as

$$
\sum_{s=t}^{\infty} \left(\frac{1}{1 + r} \right)^{s-t} \tilde{X}_t = \sum_{s=t}^{\infty} \left(\frac{1}{1 + r} \right)^{s-t} X_s
$$

$$
\tilde{X}_t = \frac{r}{1 + r} \sum_{s=t}^{\infty} \left(\frac{1}{1 + r} \right)^{s-t} X_s
$$

the annuity value of the variable at the prevailing interest rate
Consumption

\[C_t = rB_t + \tilde{Y}_t - \tilde{G}_t - \tilde{I}_t \]

Current account

\[CA_t = rB_t + Y_t - C_t - I_t - G_t \]
\[= Y_t - \tilde{Y}_t - (I_t - \tilde{I}_t) - (G_t - \tilde{G}_t) \]

* Current account imbalance occurs when variables deviate from permanent values

* Temporary increase in income implies a surplus as agents smooth consumption

* Temporary increase in spending implies a deficit as agents smooth consumption
Consumption tilting when $\beta (1 + r) \neq 1$

- Define

$$W_t = (1 + r) B_t + \sum_{s=t}^{\infty} (Y_s - G_s - I_s) \left(\frac{1}{1 + r} \right)^{s-t}$$

- Consumption becomes

$$C_t = \frac{\nu + r}{1 + r} W_t = r B_t + \tilde{Y}_t - \tilde{G}_t - \tilde{I}_t + \frac{\nu}{1 + r} W_t$$

- Current account becomes

$$CA_t = Y_t - \tilde{Y}_t - (I_t - \tilde{I}_t) - (G_t - \tilde{G}_t) - \frac{\nu}{1 + r} W_t$$

- Recall

$$\nu = 1 - \beta^\sigma (1 + r)^\sigma$$
For impatient (patient) agents $\nu > 0$, $(\nu < 0)$, and have current account deficit (surplus) even if variables take on permanent values
2.2 Stochastic Current Account

- Consumers maximize expected utility

\[U_t = E_t \left\{ \sum_{s=t}^{\infty} \beta^{s-t} u(C_s) \right\} \]

subject to actual intertemporal budget constraint

\[\sum_{s=t}^{\infty} (C_s + I_s) \left(\frac{1}{1+r} \right)^{s-t} = (1+r) B_t + \sum_{s=t}^{\infty} (Y_s - G_s) \left(\frac{1}{1+r} \right)^{s-t} \]

- Budget constraint must be obeyed with probability one
- Typically implies an endogenous upper bound on debt
- Euler equation

\[u'(C_t) = (1 + r) \beta E_t u'(C_{t+1}) \]

- Quadratic utility

\[u(C) = C - \frac{a_0}{2} C^2 \]

\[u'(C) = 1 - a_0 C \]

\[u''(C) = -a_0 \]

\[u'''(C) = 0 \]

* Substitute into the Euler equation

\[1 - a_0 C_t = (1 + r) \beta E_t (1 - a_0 C_{t+1}) \]
* When $(1 + r) \beta = 1$, consumption is a random walk

$$C_t = E_t C_{t+1}$$

* Take expected value of budget constraint and solve for consumption,

$$C_t = \frac{r}{1 + r} \left[(1 + r) B_t + E_t \sum_{s=t}^{\infty} (Y_s - G_s - I_s) \left(\frac{1}{1 + r} \right)^{s-t} \right]$$

replacing perfect foresight of future net income with expectation of future net income

* Certainty equivalence: agents make decisions under uncertainty by acting as if the future stochastic variables were equal to their means
* Problems with quadratic utility

1. Does not rule out C becoming so large that $u'(C) < 0$

2. Does not rule out negative consumption

3. Ignores upper bound on debt
Consumption and the current account with quadratic utility, endowment economy, $G_s = I_s = 0$, and stationary output

- Stationary output has constant mean and variance
 \[Y_t - \bar{Y} = \rho \left(Y_{t-1} - \bar{Y} \right) + \epsilon_t \quad E_{t-1} \epsilon_t = 0; \quad 0 \leq \rho < 1 \]

- Expected future output shows that effect of disturbance on output falls over time
 \[\mathbb{E}_t \left(Y_{t+1} - \bar{Y} \right) = \rho \left(Y_t - \bar{Y} \right) = \rho^2 \left(Y_{t-1} - \bar{Y} \right) + \rho \epsilon_{t-1} \]

- Disturbance does not affect expected value of long-run output
 \[\lim_{s \to \infty} \mathbb{E}_t \left(Y_{t+s} - \bar{Y} \right) = \lim_{s \to \infty} \rho^s \left(Y_t - \bar{Y} \right) = 0 \]
– Expected present value of output \((Y_t)\) becomes

\[
\bar{Y} \left(\frac{1 + r}{r} \right) + (Y_t - \bar{Y}) \left(1 + \frac{\rho}{1 + r} + \left(\frac{\rho}{1 + r} \right)^2 + \ldots \right)
\]

\[
= \bar{Y} \left(\frac{1 + r}{r} \right) + (Y_t - \bar{Y}) \frac{1 + r}{1 + r - \rho}
\]

– Consumption

\[
E_t C_s = C_t = rB_t + \bar{Y} + (Y_t - \bar{Y}) \frac{r}{1 + r - \rho}
\]

\[
= rB_t + \bar{Y} + \left[\rho (Y_{t-1} - \bar{Y}) + \epsilon_t \right] \frac{r}{1 + r - \rho}
\]

* Increase in \(\epsilon_t\) raises consumption permanently due to random walk

* Output reverts back to \(\bar{Y}\) at rate \(\rho\)

* Increase in output creates increase in savings so \(B_t\) rises to offset
fall in Y_t

\[\text{MPC} = \frac{r}{1 + r - \rho} < 1 \]

- Current account

\[
CA_t = rB_t + Y_t - C_t \\
= Y_t - \bar{Y} - \left[\rho(Y_{t-1} - \bar{Y}) + \epsilon_t \right] \frac{r}{1 + r - \rho} \\
= \left[\rho(Y_{t-1} - \bar{Y}) + \epsilon_t \right] \left(1 - \frac{r}{1 + r - \rho} \right) \\
= \left[\rho(Y_{t-1} - \bar{Y}) + \epsilon_t \right] \left(\frac{1 - \rho}{1 + r - \rho} \right)
\]

* Current account is independent of B_t since wealth affects CA and C identically
* Output shock has a transitory effect on the current account, which disappears once output has returned to its mean
Let output growth be stationary, giving output a unit root

\[Y_t - Y_{t-1} = \rho (Y_{t-1} - Y_{t-2}) + \epsilon_t \quad 0 < \rho < 1 \quad E_{t-1}\epsilon_t = 0 \]

To simplify, set

\[Y_{t-1} - Y_{t-2} = 0, \]

yielding

\[Y_t = Y_{t-1} + \epsilon_t \]

Now, take time \(t \) expectations of future output

\[
E_t Y_{t+1} = Y_t + \rho (Y_t - Y_{t-1}) + E_t \epsilon_{t+1} \\
= Y_{t-1} + \epsilon_t + \rho \epsilon_t = Y_{t-1} + (1 + \rho) \epsilon_t
\]

\[
E_t Y_{t+2} = E_t Y_{t+1} + \rho E_t (Y_{t+1} - Y_t) \\
= Y_{t-1} + (1 + \rho) \epsilon_t + \rho^2 \epsilon_t = Y_{t-1} + (1 + \rho + \rho^2) \epsilon_t
\]
- Effect of current output shocks to future output grows over time

- If a shock raises output today, expect it to raise future output even more

- Consumption smoothing implies that consumption increases more than output creating CA deficit

- Note, additionally that

\[E_t \Delta Y_{t+j} = \rho^j \epsilon_t \]
• Expression for the current account

 – Current account is the difference between income and permanent income

 \[CA_t = Y_t - \tilde{Y}_t \]

 – Recall permanent income is

 \[\tilde{Y}_t = \frac{r}{1 + r} E_t \sum_{j=0}^{\infty} \frac{Y_{t+j}}{(1 + r)^j}, \]

 \[CA_t = Y_t - \frac{r}{1 + r} E_t \sum_{j=0}^{\infty} \frac{Y_{t+j}}{(1 + r)^j}. \]
- Recognize that

\[
Y_{t+1} = Y_t + \Delta Y_{t+1} \\
Y_{t+2} = Y_{t+1} + \Delta Y_{t+2} = Y_t + \Delta Y_{t+1} + \Delta Y_{t+2}
\]

Therefore, the sum we need can be written as

\[
\sum_{j=0}^{\infty} \frac{Y_t}{(1 + r)^j} + \sum_{j=1}^{\infty} \frac{\Delta Y_{t+1}}{(1 + r)^j} + \sum_{j=2}^{\infty} \frac{\Delta Y_{t+2}}{(1 + r)^j} + \ldots,
\]
yielding

\[
Y_t \left(\frac{1 + r}{r}\right) + \Delta Y_{t+1} \left(\frac{1}{r}\right) + \Delta Y_{t+2} \left(\frac{1}{r (1 + r)}\right) + \ldots
\]

We can write

\[
\tilde{Y}_t = Y_t + E_t \sum_{j=1}^{\infty} \frac{\Delta Y_{t+j}}{(1 + r)^j},
\]
Substituting, the current account becomes

\[CA_t = -E_t \sum_{j=1}^{\infty} \frac{\Delta Y_{t+j}}{(1 + r)^j} = - \sum_{j=1}^{\infty} \left(\frac{\rho}{1 + r} \right)^j \epsilon_t = - \frac{1 + r}{1 + r - \rho} \epsilon_t \]
3 Current Account with Production and Uncertainty

3.1 Investment

- Optimization problem for household

$$\max_{B_{s+1}, K_{s+1}} U_t$$

$$= E_t \left\{ \sum_{s=t}^{\infty} \beta^{s-t} u \left[(1 + r) B_s - B_{s+1} + A_s F(K_s) - (K_{s+1} - K_s) - G_s \right] \right\}$$
First order condition on bonds yields bond Euler equation with uncertainty

\[\frac{\partial U_t}{\partial B_{t+1}} = E_t \left\{ u'(C_t)(-1) + \beta u'(C_{t+1})[1 + r] \right\} = 0 \]

\[u'(C_t) = E_t \left\{ \beta u'(C_{t+1})[1 + r] \right\} \]

\[1 = E_t \left\{ \frac{\beta u'(C_{t+1})}{u'(C_t)}[1 + r] \right\} \]

First order condition on capital yields capital Euler equation with uncertainty

\[\frac{\partial U_t}{\partial K_{t+1}} = E_t \left\{ u'(C_t)(-1) + \beta u'(C_{t+1}) \left[A_{t+1}F'(K_{t+1}) + 1 \right] \right\} = 0 \]

\[u'(C_t) = E_t \left\{ \beta u'(C_{t+1}) \left[A_{t+1}F'(K_{t+1}) + 1 \right] \right\} \]
\[1 = E_t \left\{ \frac{\beta u'(C_{t+1})}{u'(C_t)} [A_{t+1} F'(K_{t+1}) + 1] \right\} \]

* Take expectation using \(E(xy) = E(x) E(y) + \text{cov}(x, y) \)

\[
1 = \frac{1}{1 + r} E_t [A_{t+1} F'(K_{t+1}) + 1] + \text{cov} \left(\frac{\beta u'(C_{t+1})}{u'(C_t)} ; [A_{t+1} F'(K_{t+1})] \right)
\]

\[
1 - \text{cov} \left(\frac{\beta u'(C_{t+1})}{u'(C_t)} ; [A_{t+1} F'(K_{t+1})] \right) = \frac{E_t [A_{t+1} F'(K_{t+1})]}{1 + r} + \frac{1}{1 + r}
\]

\[
\frac{r}{1 + r} - \text{cov} \left(\frac{\beta u'(C_{t+1})}{u'(C_t)} ; [A_{t+1} F'(K_{t+1})] \right) = \frac{E_t [A_{t+1} F'(K_{t+1})]}{1 + r}
\]

* Expected future marginal product of capital equals interest rate adjusted by a covariance term

* Differs from certainty equivalence (CEQ) by this covariance term
Sign of covariance term is likely negative because when A_{t+1} is high, the marginal productivity of capital is high, Y_{t+1} and C_{t+1} are high, making $u'(C_{t+1})$ low.

Negative covariance adds a risk premium to capital because capital returns are high when consumption is already high.
Effect of productivity shock on current account with investment and stationary productivity

Assume

\[A_{t+1} - \bar{A} = \rho \left(A_t - \bar{A} \right) + \epsilon_{t+1} = \rho \left(A_{t-1} - \bar{A} + \epsilon_t \right) + \epsilon_{t+1} \]

Taking expectations

\[E_t \left(A_{t+1} - \bar{A} \right) = \rho \left(A_{t-1} - \bar{A} + \epsilon_t \right) \]

implying that a current increase in productivity increases expected future productivity

Current account response depends on response of consumption and investment

\[CA_t = A_t F(K_t) - C_t - I_t \]
* Consumption increases less than output because output is temporarily high raising the current account

* Investment also increases since expected future productivity is high, reducing the current account

* Empirically current account is countercyclical, implying that the investment response must be large enough to reverse the response predicted by consumption alone
3.2 Precautionary savings

- Bond Euler equation with uncertainty

\[1 = (1 + r) \beta E_t \left\{ \frac{u'(C_{t+1})}{u'(C_t)} \right\} \]

- To have a precautionary motive, the third derivative of utility must be positive, implying that marginal utility is a convex function of consumption

\[u' > 0, \quad u'' < 0, \quad u'''> 0 \]
- Illustrate with log utility

\[u' = \frac{1}{C} > 0 \quad u'' = -\frac{1}{C^2} < 0, \quad u''' = \frac{1}{C^4} > 0 \]

- Euler equation with log utility

\[1 = (1 + r) \beta E_t \left\{ \frac{C_t}{C_{t+1}} \right\} = (1 + r) \beta C_t E_t \left\{ \frac{1}{C_{t+1}} \right\} \]

* In the absence of uncertainty \((1 + r) \beta = 1\), yields constant consumption over time

* However, with uncertainty, \((1 + r) \beta = 1\) does not imply that consumption is expected to be constant over time

\[E_t \left\{ \frac{1}{C_{t+1}} \right\} > \frac{1}{E_t C_{t+1}} \]
* If \((1 + r) \beta = 1\),

\[
\frac{1}{C_t} = E_t \left\{ \frac{1}{C_{t+1}} \right\} > \frac{1}{E_t C_{t+1}},
\]

implying that \(E_t C_{t+1} > C_t\), such that consumption is expected to rise over time: precautionary saving

* In a closed economy with uncertainty, the a stationary equilibrium requires that \((1 + r) \beta < 1\) to assure that consumption is expected to be constant
- Wealth diminishes the precautionary motive as marginal utility flattens out as wealth and consumption increase

 * Precautionary savings yields a role for bonds (wealth) in determining the current account

 * As bonds increase with a current account surplus the precautionary motive weakens increasing spending and reducing the current account surplus

 * With precautionary savings, lose permanent effects of transitory shocks (through permanent effect on bonds)

 * Models linearized about the steady state lose the positive third derivative, lose the precautionary motive, and have the implication that a shock creates a permanent change in bonds and consumption
3.3 Current Account with Consumer Durables and No Uncertainty

- Utility

\[U_t = \sum_{s=t}^{\infty} \beta^{s-t} [\gamma \log (C_s) + (1 - \gamma) \log D_s] \]

- Budget constraint with \(p_s \) the relative price of durables in terms of consumption

\[B_{s+1} - B_s = rB_s + Y_s - C_s - p_s [D_s - (1 - \delta) D_{s-1}] - (K_{s+1} - K_s) - G_s \]
• Maximization problem using budget constraint to substitute for consumption

\[U_t = \sum_{s=t}^{\infty} \beta^{s-t} (1 - \gamma) \log D_s + \sum_{s=t}^{\infty} \beta^{s-t} \gamma \log \left\{ (1 + r) B_s - B_{s+1} + Y_s - p_s \left[D_s - (1 - \delta) D_{s-1} \right] \right\} \]

• First order condition with respect to bonds is bond Euler equation

\[C_{s+1} = (1 + r) \beta C_s \]

 – First order condition with respect to durables

\[\frac{\gamma p_s}{C_s} = \frac{1 - \gamma}{D_s} + \beta (1 - \delta) \frac{\gamma p_{s+1}}{C_{s+1}} \]

MU cost of acquiring durables = MU of immediate use + discounted

MU of selling what remains in one period
• Combine FO conditions to eliminate C_{s+1}

$$\frac{\gamma p_s}{C_s} = \frac{1 - \gamma}{D_s} + (1 - \delta) \frac{\gamma p_{s+1}}{(1 + r) C_s}$$

$$\text{MRS} \equiv \frac{(1 - \gamma) C_s}{\gamma D_s} = p_s - (1 - \delta) \frac{p_{s+1}}{1 + r} = \iota_s \equiv \text{user cost}$$

– where user cost is the price less the resale value of depreciated durables

• Intertemporal budget constraint with durables
– Durables term

\[pt \left[D_t - (1 - \delta) D_{t-1} \right] \]

\[+ p_{t+1} \left[D_{t+1} - (1 - \delta) D_t \right] \left(\frac{1}{1 + r} \right) \]

\[+ p_{t+2} \left[D_{t+2} - (1 - \delta) D_{t+1} \right] \left(\frac{1}{1 + r} \right)^2 \]

– Collecting terms on each \(D_t \)

\[\sum_{s=t}^{\infty} \xi_s D_s \left(\frac{1}{1 + r} \right)^{s-t} - pt \left(1 - \delta \right) D_{t-1} + \lim_{N \to \infty} p_{t+n} D_{t+N} \left(\frac{1}{1 + r} \right)^{t+N} \]
– Setting limit to zero, IBC becomes

\[
\sum_{s=t}^{\infty} (C_s + \iota_s D_s) \left(\frac{1}{1 + r} \right)^{s-t} = (1 + r) B_t + p_t (1 - \delta) D_{t-1} + \sum_{s=t}^{\infty} (Y_s - G_s - I_s) \left(\frac{1}{1 + r} \right)^{s-t}
\]

– Consumption and Durables when \(\beta (1 + r) = 1 \)

\[
C_t = \frac{\gamma r}{1 + r} \left[(1 + r) B_t + p_t (1 - \delta) D_{t-1} + \sum_{s=t}^{\infty} (Y_s - G_s - I_s) \left(\frac{1}{1 + r} \right)^{s-t} \right]
\]

\[
D_t = \frac{(1 - \gamma) r}{\iota (1 + r)} \left[(1 + r) B_t + p_t (1 - \delta) D_{t-1} + \sum_{s=t}^{\infty} (Y_s - G_s - I_s) \left(\frac{1}{1 + r} \right)^{s-t} \right]
\]

– If \(\iota_s \) is constant, then \(C_t \) and \(D_t \) are proportionate
– However, expenditures on the two, C_t and $p_t [D_t - (1 - \delta) D_{t-1}]$ are not

– with p and ν fixed, and $\delta = 0$, consumer buys all durables in beginning and never purchases them again

– with $\delta > 0$, replaces durables as they wear out

– when there are shocks to p and ν, get large changes in durables expenditure as move immediately to new equilibrium

– a change in demand for durables can lead to a large current account imbalance as durables expenditures change, yielding high current account volatility
4 Firms Distinct from Households with Certainty

4.1 Assumptions

- Production is homogenous of degree one, yielding CRS
 \[Y = AF(K, L) \]

- \(L \) is fixed

- \(V_t \) is the price of a claim to a firm’s entire stream of future profits beginning on date \(t + 1 \)
• x_{s+1} is share of domestic firm owned by the representative consumer at end of the period s

• d_s is dividends per share on date s
4.2 Household Problem

- Consumer budget constraint

\[B_{s+1} - B_s + V_s (x_{s+1} - x_s) = rB_s + d_s x_s + w_s L - C_s - G_s \]

- Optimization problem using budget constraint to substitute for consumption

\[U_t = \sum_{s=t}^{\infty} \beta^{s-t} u [-B_{s+1} + (1 + r) B_s - V_s (x_{s+1} - x_s) + d_s x_s + w_s L - G_s] \]

- First order condition with respect to \(x_{s+1} \)

\[\frac{\partial U_t}{\partial x_{s+1}} = \left\{ u' (C_s) (-V_s) + \beta u' (C_{s+1}) (d_{s+1} + V_{s+1}) \right\} = 0 \]
\[1 + r = \frac{u'(C_s)}{\beta u'(C_{s+1})} = \frac{d_{s+1} + V_{s+1}}{V_s} \]

- returns on equity are dividend plus value of asset relative to initial value of the asset

- in equilibrium with no uncertainty returns on all assets must be equal
Reformulate individual budget constraint

- Define Q_{s+1} as total financial wealth going into period $s+1$

$$Q_{s+1} = B_{s+1} + V_s x_{s+1}$$

- FO condition, and equivalently arbitrage across asset returns, implies

$$(1 + r) V_s = d_{s+1} + V_{s+1}$$

- Solving for dividends

$$d_{s+1} = (1 + r) V_s - V_{s+1}$$
Copy agent budget constraint from above and rewrite

\[B_{s+1} - B_s + V_s (x_{s+1} - x_s) = rB_s + d_s x_s + w_s L - C_s - G_s \]

\[Q_{s+1} - Q_s - V_s x_s + V_{s-1} x_s = rQ_s - rV_{s-1} x_s + d_s x_s + w_s L - C_s - G_s \]

- collect terms on \(x_s \)

\[d_s - [(1 + r) V_{s-1} - V_s] = 0 \]

- use the definition of dividends from above

\[Q_{s+1} - Q_s = rQ_s + w_s L - C_s - G_s \quad \text{for } s > t \]

- holds only if arbitrage allows equality of returns to stocks and bonds

- does not hold in event of unanticipated shock which invalidates equality
– Sum present values of budget constraints

\[
Q_{t+1} - [(1 + r) B_t + d_t x_t + V_t x_t + w_t L - C_t - G_t] = 0
\]

\[
+ \frac{1}{1 + r} \left\{ Q_{t+2} - (1 + r) Q_{t+1} + w_{t+1} L - C_{t+1} - G_{t+1} \right\} = 0
\]

\[
+ \left(\frac{1}{1 + r} \right)^2 \left\{ Q_{t+3} - (1 + r) Q_{t+2} + w_{t+2} L - C_{t+2} - G_{t+2} \right\} = 0
\]

+

\[
\left(\frac{1}{1 + r} \right)^{N-1} Q_{t+N}
\]

\[
- \left[(1 + r) B_t + d_t x_t + V_t x_t + \sum_{s=t}^{N-1} (w_s L - C_s - G_s) \left(\frac{1}{1 + r} \right)^{t-s} \right]
\]

– take limit as \(N \rightarrow \infty \) and set the limit term to zero implying PV consumption equals PV labor income net of taxes plus initial assets
with interest and dividends

\[\sum_{s=t}^{\infty} C_s \left(\frac{1}{1 + r} \right)^{t-s} = (1 + r) B_t + d_t x_t + V_t x_t + \sum_{s=t}^{\infty} (w_s L - G_s) \left(\frac{1}{1 + r} \right)^{t-s} \]
4.3 Value of the firm and stock prices

- Asset pricing equation is the FO condition with respect to x_{t+1}

$$V_t = \frac{d_{t+1} + V_{t+1}}{1 + r}$$

- Solve forward

$$V_{t+1} = \frac{d_{t+2} + V_{t+2}}{1 + r}$$

$$V_t = \frac{d_{t+1}}{1 + r} + \frac{1}{1 + r} \left[\frac{d_{t+2} + V_{t+2}}{1 + r} \right]$$

$$V_t = \sum_{s=t+1}^{\infty} d_s \left(\frac{1}{1 + r} \right)^{s-t} + \lim_{T \to \infty} \left(\frac{1}{1 + r} \right)^T V_{t+T}$$
– Impose limit term equals zero requiring that stock value not grow faster than interest rate

– Value of stocks today is the present value of future dividends
4.4 Behavior of the Firm

- Dividends

\[d_s = A_s F(K_s, L_s) - w_s L_s - (K_{s+1} - K_s) \]

- Value of the firm

\[V_t = \sum_{s=t+1}^{\infty} \left(\frac{1}{1 + r} \right)^{s-t} \left[A_s F(K_s, L_s) - w_s L_s - (K_{s+1} - K_s) \right] \]

- Firm maximizes present value of dividends

\[V_t + d_t = \sum_{s=t}^{\infty} \left(\frac{1}{1 + r} \right)^{s-t} \left[A_s F(K_s, L_s) - w_s L_s - (K_{s+1} - K_s) \right] \]
\begin{itemize}
 \item FO condition with respect to K_{s+1}

 \[
 \frac{\partial (V_t + d_t)}{\partial K_{t+1}} = -1 + \left(\frac{1}{1 + r} \right) [A_{t+1}F_K (K_{t+1}, L_{t+1}) + 1] = 0
 \]

 \[A_{t+1}F_K (K_{t+1}, L_{t+1}) = r\]

 \item FO condition with respect to L_s

 \[
 \frac{\partial (V_t + d_t)}{\partial L_t} = A_tF_L (K_t, L_t) - w_t = 0
 \]
\end{itemize}
4.5 Alternative Intertemporal Budget Constraint

- CRS implies

$$AF(K, L) = AF_K K + AF_L L = rK + wL$$

- Using this in the value of stock expression

$$V_t = \sum_{s=t+1}^{\infty} \left(\frac{1}{1 + r} \right)^{s-t} [rK_s - (K_{s+1} - K_s)]$$

$$= \sum_{s=t+1}^{\infty} \left(\frac{1}{1 + r} \right)^{s-t} [(1 + r)K_s - K_{s+1}]$$

$$= \left(\frac{1}{1 + r} \right) [(1 + r)K_{t+1} - K_{t+2}] + \left(\frac{1}{1 + r} \right)^2 [(1 + r)K_{t+2} - K_{t+3}] + \ldots$$

$$= K_{t+1} - \lim_{T \to \infty} \left(\frac{1}{1 + r} \right)^{t+T} K_{t+T+1}$$
- Impose limit equal to zero

- Ex dividend market value of the firm is the value of capital in place for production next period

- Country’s financial wealth is the sum of its net foreign assets plus capital

\[Q = B + K \]

- IBC can be written

\[
\sum_{s=t}^{\infty} C_s \left(\frac{1}{1 + r} \right)^{t-s} = (1 + r) Q_t + \sum_{s=t}^{\infty} (w_s L - G_s) \left(\frac{1}{1 + r} \right)^{t-s}
\]
- When $\beta (1 + r) = 1$

$$C_t = rQ_t + \frac{r}{1+r} \sum_{s=t}^{\infty} (w_s L - G_s) \left(\frac{1}{1+r} \right)^{t-s}$$

$$= rQ_t + \tilde{w}_t L - \tilde{G}_t$$

- Alternative current account expression

$$S_t = rQ_t + w_t L - G_t - C_t$$

$$CA_t = S_t - I_t = w_t L - \tilde{w}_t L - (G_t - \tilde{G}) - I_t$$

* Positive future productivity shock raises I_t for one period and \tilde{w}_t permanently

* CA deficit for one period

* Deficit could last longer if investment takes more than one period