Interest Rate Parity
Chapter 14 (second part)
1. Nominal Returns

2. Real Returns

3. Interest rate parity

4. Exogenous shocks

5. Covered interest rate parity
1 Nominal Returns

• Nominal return (dollar values, gross returns)

 - Dollar value of asset in period $t + 1$ relative to its value in period t
 \[
 \text{nominal rate of return} = \frac{\text{\$ value (t + 1)}}{\text{\$ value (t)}}
 \]

 - For a dollar bond, nominal dollar return is $1 + \text{nominal dollar interest rate}$
 \[
 \text{nominal dollar return on dollar bond} = 1 + R$
 \]

 - For a euro bond, nominal euro return is $1 + \text{nominal euro interest rate}$
 \[
 \text{nominal euro return on euro bond} = 1 + R$
 \]
• Compare dollar returns on dollar bond and on Euro bond

 – Take $1 and buy either a dollar bond or a euro bond

 – if buy a dollar bond, at the end of the year will have dollars equal to

 \[1 + R_s \]

 – if buy a euro bond, can buy \(\frac{1}{E_t} \) euro bonds with $1

 * those euro bonds earn \(1 + R_€ \), yielding total euros of

 \[\frac{1}{E_t} \times (1 + R_€) \]

 where \(E \) is \(E$/€ \)

 * converting these euros back to dollars next periods yields dollars
generated by purchasing euro bond of

$$\frac{E^e_{t+1}}{E_t} \times (1 + R_\epsilon)$$

– since the denominator is 1, these expressions represent dollar returns
on a dollar bond and a euro bond, respectively

• Approximations

– fact: for small X,

$$\ln(1 + X) \approx X$$

– dollar return on dollar bond

$$1 + R_\$$$
- net returns equal gross returns minus 1

\[R_\\$ = \ln (1 + R_\\$) \]

- equivalently, net returns equal the logarithm of gross returns

* dollar bond

\[\ln (1 + R_\\$) = R_\\$ \]

* euro bond

\[
\ln \left(\frac{E_{t+1}^e}{E_t} \times (1 + R_€) \right) = \ln \left(\frac{E_{t+1}^e}{E_t} \right) + \ln (1 + R_€)
\]

\[
\ln \frac{E_{t+1}^e}{E_t} = \ln \frac{E_{t+1}^e - E_t + E_t}{E_t} = \ln \left(\frac{E_{t+1}^e - E_t}{E_t} + 1 \right) \approx \frac{E_{t+1}^e - E_t}{E_t}
\]
\[\ln \left[\frac{E_{t+1}^e}{E_t} \times (1 + R_\epsilon) \right] \approx \frac{E_{t+1}^e - E_t}{E_t} + R_\epsilon \]
1.1 Real Returns

- Real returns are values in terms of purchasing power (gross returns)

- Real value of asset in period $t + 1$ relative to its real value in period t

 \[
 \text{real rate of return} = \frac{\text{expected real value} \ (t + 1)}{\text{real value} \ (t)} = \frac{\text{dollar value in } t + 1}{P_{t+1}^e} \div \frac{\text{dollar value in } t}{P_t}
 \]

- Dollar bond

 \[
 \frac{\text{dollar value in } t + 1}{P_{t+1}^e} \div \frac{\text{dollar value in } t}{P_t} = \frac{1 + R_s}{\frac{P_t}{P_{t+1}^e}} = \frac{1 + R_s}{P_t} \times \frac{P_t}{1} = \frac{P_t (1 + R_s)}{P_{t+1}^e}
 \]
− If prices rise, $\frac{P_t}{P_{t+1}} < 1$, and the real return is less than the nominal return

− Net return - take logarithm

$$\ln \frac{P_t (1 + R$_t$)}{P_{t+1}^e} = \ln (1 + R$_t$) + \ln \frac{P_t}{P_{t+1}^e}$$

$$\ln (1 + R$_t$) \approx R$_t$$$

$$\ln \frac{P_t}{P_{t+1}^e} = - \ln \frac{P_{t+1}^e}{P_t} = - \ln \frac{(P_{t+1}^e - P_t) + P_t}{P_t}$$

$$= - \ln \left[\frac{(P_{t+1}^e - P_t)}{P_t} + 1 \right] \approx - \frac{(P_{t+1}^e - P_t)}{P_t}$$
* therefore

\[
\ln \frac{P_t (1 + R_\$$)}{P^e_{t+1}} \approx R_\$$ - \frac{(P^e_{t+1} - P_t)}{P_t}
\]

• Euro bond

\[
\frac{E^e_{t+1}}{E_t} \times (1 + R_\£) = \frac{E^e_{t+1}}{E_t} \times \left(1 + \frac{1}{P^e_t} \right) = \frac{E^e_{t+1}}{P^e_{t+1}} \times \frac{P^e_t}{P^e_{t+1}} \times \frac{P_t}{1}
\]

\[
= P_t \times \frac{E^e_{t+1}}{E_t} \times \left(1 + R_\£\right) = \frac{E^e_{t+1}}{E_t} \times \frac{P_t}{P^e_{t+1}} \left(1 + R_\£\right)
\]

– If the dollar is expected to depreciate \(\frac{E^e_{t+1}}{E_t} > 1\), return on the euro bond is higher
- Net return - take logarithm

\[
\ln \left[\frac{E_{t+1}^e P_t}{E_t P_{t+1}^e} (1 + R_\epsilon) \right] = \ln \frac{E_{t+1}^e}{E_t} - \ln \frac{P_{t+1}^e}{P_t} + \ln (1 + R_\epsilon)
\]

\[
\approx \frac{E_{t+1}^e - E_t}{E_t} - \frac{(P_{t+1}^e - P_t)}{P_t} + R_\epsilon
\]
2 Equilibrium in the Foreign Exchange Market

2.1 Demand for assets depends upon

- Nominal rates of return

- Risk

- Liquidity
2.2 Interest rate parity

- Interest rate parity equates dollar returns in two currencies

\[R_\$ = R_€ + \frac{E_{t+1}^e - E_t}{E_t} \]

- To begin

 - Exogenous variables include

 \[R_\$, R_€, E_{t+1}^e \]

 - Endogenous variable

 \[E_t \]
• Graph

 – $R_\$ as a function of E_t

 – $R_\€ + \frac{E_t^e - E_t}{E_t}$ as a function of E_t
2.3 Changes in exogenous variables

- $R_\$ increases
- $R_\$ increases
- E^{e}_{t+1} increases
3 Covered Interest Rate Parity

3.1 Use forward market

- Replace E_{t+1}^e with F_t

- Covered interest rate parity

\[R_s = R_e + \frac{F_t - E_t}{E_t} \]