Financial Economics	Wiener-Brownian Motion	Financial Economics	Wiener-Brownian Motion
Stochastic Difference Let Δt denote the length of a time period. For a random variable x_t , define the <i>stochastic difference</i> $\Delta x_t := x_{t+\Delta t} - x_t$; the difference is from the present into the future, not from the		Of course $x_{t} = x_{0} + (x_{\Delta t} - x_{0}) + (x_{2\Delta t} - x_{\Delta t}) + \cdots + (x_{t-\Delta t} - x_{t-2\Delta t}) + (x_{t} - x_{t-\Delta t})$ $= x_{0} + \Delta x_{0} + \Delta x_{\Delta t} + \cdots + \Delta x_{t-2\Delta t} + \Delta x_{t-\Delta t}.$ The value at time <i>t</i> is the initial value plus the sum of the	
past to the present $(\Delta x_t : \neq x_t - x_{t-\Delta t})$.		stochastic differences.	
Financial Economics	Wiener-Brownian Motion	Financial Economics	Wiener-Brownian Motion
Discrete-Time, No	rmal Random Walk		
Assume $\Delta x_t \sim N(0, \Delta t)$ $n\Delta t = t,$ such that Δx_t is uncorrelated for different periods (<i>white noise</i>). For $x_0 = 0$, then $x_t \sim N(0, t)$. We refer to x_t as a <i>random walk</i> .		Wiener-Brownian Motion Intuitively, Wiener-Brownian motion is the continuous-time limit of the discrete-time, normal random walk, as $\Delta t \rightarrow 0$: $x_t = x_0 + \lim_{\Delta t \rightarrow 0} (\Delta x_0 + \Delta x_{\Delta t} + \dots + \Delta x_{t-2\Delta t} + \Delta x_{t-\Delta t}).$	
3		4	
Financial Economics	Wiener-Brownian Motion	Financial Economics	Wiener-Brownian Motion
Stochastic Differential		In the limit, the sum of the c	changes in the stochastic differences

Although time is continuous, it is useful to think of the analysis as dealing with an infinitesimal time period of length dt. The current time is t and next period is t + dt. Define the stochastic differential $dx_t := x_{t+dt} - x_t$; the difference is from the present into the future, not from the past to the present $(dx_t := x_t - x_{t-dt})$. In the limit, the sum of the changes in the stochastic differences is the integral of the stochastic differential,

$$\begin{aligned} x_t - x_0 &= \lim_{\Delta t \to 0} \left(\Delta x_0 + \Delta x_{\Delta t} + \dots + \Delta x_{t-2\Delta t} + \Delta x_{t-\Delta t} \right) \\ &= \int_0^t \mathrm{d} x_t. \end{aligned}$$

Financial Economics	Wiener-Brownian Motion	Financial Economics	Wiener-Brownian Motion	
Wiener-Brownian MotionIn the limit, $dx_t \sim N(0, dt)$,in which dx_t is white noise. For $x_0 = 0$, then $x_t = N(0, t)$.We refer to this stochastic process as Wiener-Brownian motion.		 Properties of Wiener-Brownian Motion Almost everywhere, x_t is Continuous; Non-differentiable. 		
		forecasted, which would contradict the white noise property. Using measure theory, Wiener proved these results rigorously. 8		