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Stochastic Difference

Let At denote the length of atime period. For arandom
variable X, define the stochastic difference

AXe = Xeqpat — X%,

the difference is from the present into the future, not from the
past to the present (AX; 7 X — Xt_At)-
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Of course

X = Xo+ (Xat — Xo) + (Xoat — Xat) +- -
+ (Xe—at — %e—2at) + (% — Xe—at)
= Xg+ AXg + AXpt + - - - + A% _2at + A% _at-

The value at timet is theinitial value plus the sum of the
stochastic differences.
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Discrete-Time, Normal Random Walk
Assume
Ax ~ N(0,At)
nAt =t,

such that Ax; is uncorrelated for different periods (white noise).
For xg = 0, then
% ~ N(O,t).

We refer to x as arandom walk.
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Wiener-Brownian Motion

Intuitively, Wiener-Brownian motion is the continuous-time
limit of the discrete-time, normal random walk, as At — O:

X = XO+A|timO(AXO+AXAt o A% oat + AXat) -
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Stochastic Differential

Although timeis continuous, it is useful to think of the analysis
as dealing with an infinitesimal time period of lengthdt. The
current timeist and next period ist + dt. Define the stochastic
differential dx; := %.q — X%; the difference is from the present
into the future, not from the past to the present

(dx 17 X — X—dt)-
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In the limit, the sum of the changes in the stochastic differences
istheintegral of the stochastic differential,

X —X0 = lim (Axo+Axat +++++ A% 2at + A% 1)
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Wiener-Brownian Motion Properties of Wiener-Brownian Motion

Almost everywhere, x; is

In the limit,
dx ~ N(0,dt),  Continuous;
in which dx; iswhite noise. For X = 0, then * Non-differentiable.
x = N(0,t). Differentiability would imply that the change in x; can be

forecasted, which would contradict the white noise property.

We refer to this stochastic process as W ener-Brownian motion. . i .
Using measure theory, Wiener proved these results rigorously.




