Asset Return

Definition 1 If a one-dollar investment in an asset at time t is worth

 $1 + \frac{\mathrm{d}a}{-}$

at time t + dt, then the stochastic differential

d*a*

a

1

is the return on the asset.

For example, consider the return

$$\frac{\mathrm{d}a}{a} = \mu \,\mathrm{d}t + \sigma \,\mathrm{d}z.$$

Then the expected return from *t* to t + dt is μdt , and expected *rate* of return (the expected return per unit time) is μ . The variance of the return is $\sigma^2 dt$, so the variance is σ^2 per unit time.

Portfolio

If an investor with wealth w_t at time *t* buys a portfolio with return da/a, then at time t + dt his wealth is

$$w_{t+\mathrm{d}t} = w_t \left(1 + \frac{\mathrm{d}a}{a}\right),$$

so the change in wealth is

$$\mathrm{d}w_t = w_{t+\mathrm{d}t} - w_t = w_t \frac{\mathrm{d}a}{a}.$$

Expected Utility

The utility of end-of-period wealth is

$$u(w_{t+dt}) = u(w_{t}) + du(w_{t})$$

= $u(w_{t}) + u'(w_{t}) dw_{t} + \frac{1}{2}u''(w_{t}) (dw_{t})^{2}$
= $u(w_{t}) + u'(w_{t}) \left(w_{t}\frac{da}{a}\right) + \frac{1}{2}u''(w_{t}) \left(w_{t}\frac{da}{a}\right)^{2}$

The expected utility is

 $E\left[u\left(w_{t+dt}\right)\right]$ $= \mathbf{E}\left[u(w_t) + w_t u'(w_t)\left(\frac{\mathrm{d}a}{a}\right) + \frac{1}{2}w_t^2 u''(w_t)\left(\frac{\mathrm{d}a}{a}\right)^2\right]$ $= u(w_t) + w_t u'(w_t) \operatorname{E}\left(\frac{\mathrm{d}a}{a}\right) + \frac{1}{2} w_t^2 u''(w_t) \operatorname{Var}\left(\frac{\mathrm{d}a}{a}\right)$ $= u(w_t) + w_t u'(w_t) \left[E\left(\frac{\mathrm{d}a}{a}\right) + \frac{1}{2} \frac{w_t u''(w_t)}{u'(w_t)} \operatorname{Var}\left(\frac{\mathrm{d}a}{a}\right) \right].$ Make a linear transformation of utility so that $u(w_t) = 0$ and $w_t u'(w_t) = 1$.

Then the expected utility is the expression in brackets,

$$\mathsf{E}\left(\frac{\mathrm{d}a}{a}\right) - \frac{1}{2}\alpha \operatorname{Var}\left(\frac{\mathrm{d}a}{a}\right),\tag{1}$$

in which α is the relative risk aversion.

In this derivation,

$$\left(\frac{\mathrm{d}a}{a}\right)^2 = (\mu\,\mathrm{d}t + \sigma\,\mathrm{d}z)^2 = (\sigma\,\mathrm{d}z)^2 = \sigma^2\,\mathrm{d}t = \mathrm{Var}\left(\frac{\mathrm{d}a}{a}\right)$$

In contrast, in discrete time no such simple result exists. In the square

$$\left(\mu\,\Delta t+\sigma\,\Delta z\right)^2,$$

the term $\mu \Delta t$ does not disappear, and $(\Delta z)^2$ is stochastic. Furthermore, μ and σ may change during the interval Δt .

Two-Asset Portfolio Choice

Consider portfolio choice with a risk-free asset and a single risky asset. The return on the risk-free asset is

r dt.

The return on the risky asset is

(r+m) dt + s dz.

Here m > 0 is the expected excess return, and s > 0 is the standard deviation.

Portfolio Return

If one invests the fraction f of wealth in the risky asset and the fraction 1 - f in the risk-free asset, then the return on the portfolio is the returns weighted by the fractions,

$$(1-f)(r dt) + f[(r+m) dt + s dz] = (r+fm) dt + fs dz.$$

The mean rate of return is $\mu = r + fm$ and the variance of the return is $f^2s^2 dt$. We refer to $\sigma = fs$ as the standard deviation.

Efficient Frontier

As f varies, one obtains the various possible combinations of standard deviation and mean. In (standard deviation, mean)-space, one obtains a straight line, with intercept r and slope m/s.

- We refer to this straight line as the *efficient frontier*.
- The value f > 1 signifies leveraged investment: one borrows at the risk-free interest rate and then invests this borrowing plus the initial wealth in the risky asset.

Financial Economics

Two-Asset Portfolio Choice

Figure 1: Possibilities

11

Expected Utility Maximization

The efficient frontier shows the possibilities and is akin to a budget line.

By (1), the optimum portfolio choice maximizes

$$\mu-\frac{1}{2}\alpha\sigma^2.$$

In (standard deviation, mean)-space, the indifference curves are parabolas.

Figure 2: Indifference Curves

Financial Economics

Two-Asset Portfolio Choice

Slope of Indifference Curve

Along an indifference curve

$$\mu - \frac{1}{2}\alpha\sigma^2 = \text{constant.}$$

Viewing μ as a function of σ , differentiate with respect to σ ,

$$\frac{\mathrm{d}\mu}{\mathrm{d}\sigma} - \alpha\sigma = 0.$$

Hence the slope of an indifference curve is

$$\frac{\mathrm{d}\mu}{\mathrm{d}\sigma} = \alpha\sigma.$$

Indifference Curve Tangent to Efficient Frontier

The optimum portfolio choice is to pick f so an indifference curve is tangent to the efficient frontier.

Setting the slope of the efficient frontier equal to the slope of the indifference curve gives

$$\frac{m}{s} = \alpha \sigma = \alpha f s.$$

Figure 3: Optimum Portfolio Choice

Optimum Portfolio Choice

Solving for *f* gives

$$f=\frac{m}{\alpha s^2}.$$

This formula makes sense intuitively. As *m* increases, as α decreases, or as *s* decreases, the investment in the risky asset rises.