## Term Structure

Consider a simplification of the model of Vasicek [1] of the term structure of interest rates.

The short-term, risk-free interest rate $r$ follows a random walk,

$$
\mathrm{d} r=\rho \mathrm{d} z
$$

Let $P(\tau, r)$ denote the price of a risk-free pure discount bond worth one dollar at its maturity in $\tau$ years. Of course $P(0, r)=1$. We wish to solve for the equilibrium price.

## Yield to Maturity

Let $R(\tau, r)$ denote the yield to maturity on the $\tau$-year bond. By definition,

$$
P(\tau, r)=\mathrm{e}^{-\tau R(\tau, r)},
$$

SO

$$
R(\tau, r)=-\frac{1}{\tau} \ln P(\tau, r)
$$

## Expectations Theory of the Term Structure

The standard model of the term structure is the expectations theory, which argues that the long-term interest rate is the average of the current and expected future short-term interest rates.

Here the expected future short-term rate is just the current short-term rate, so

$$
R(\tau, r)=r
$$

according to the expectations theory. Hence

$$
P(\tau, r)=\mathrm{e}^{-r \tau} .
$$

Financial Economics

## Return

The price of a bond at time $t$ maturing at time $T$ is $P(T-t, r)$. The return on the bond is the price change $\mathrm{d} P / P$.

By Itô's formula,

$$
\begin{aligned}
\mathrm{d} P & =-\frac{\partial P}{\partial \tau} \mathrm{~d} t+\frac{\partial P}{\partial r} \mathrm{~d} r+\frac{1}{2} \frac{\partial^{2} P}{\partial r^{2}}(\mathrm{~d} r)^{2}(\tau \text { falls as } t \text { rises }) \\
& =-\frac{\partial P}{\partial \tau} \mathrm{~d} t+\frac{\partial P}{\partial r} \rho \mathrm{~d} z+\frac{1}{2} \frac{\partial^{2} P}{\partial r^{2}}(\rho \mathrm{~d} z)^{2} \\
& =\left(-\frac{\partial P}{\partial \tau}+\frac{1}{2} \rho^{2} \frac{\partial^{2} P}{\partial r^{2}}\right) \mathrm{d} t+\rho \frac{\partial P}{\partial r} \mathrm{~d} z
\end{aligned}
$$

## Market Equilibrium

For market equilibrium, assume that all bonds must have expected rate of return $r$ :

$$
r \mathrm{~d} t=\mathrm{E}_{t}\left(\frac{\mathrm{~d} P}{P}\right)=\frac{1}{P}\left(-\frac{\partial P}{\partial \tau}+\frac{1}{2} \rho^{2} \frac{\partial^{2} P}{\partial r^{2}}\right) \mathrm{d} t
$$

## Term-Structure Equation

We wish to solve the term-structure equation

$$
\begin{equation*}
r P=-\frac{\partial P}{\partial \tau}+\frac{1}{2} \rho^{2} \frac{\partial^{2} P}{\partial r^{2}} \tag{1}
\end{equation*}
$$

subject to the boundary condition $P(0, r)=1$.

## Constant Interest Rate

The special case $\rho=0$ implies a constant interest rate. The term-structure equation is then

$$
r P=-\frac{\partial P}{\partial \tau}
$$

with solution

$$
P(\tau, r)=\mathrm{e}^{-r \tau}
$$

The yield to maturity is

$$
R(\tau, r)=r
$$

in agreement with the expectations theory.

## General Solution

The general solution is

$$
P(\tau, r)=\mathrm{e}^{-r \tau+\frac{1}{6} \rho^{2} \tau^{3}}
$$

which one verifies by substituting into the term-structure equation.

## Return

The return is

$$
\begin{aligned}
\frac{\mathrm{d} P}{P} & =\left(-\frac{1}{P} \frac{\partial P}{\partial \tau}+\frac{1}{2} \rho^{2} \frac{1}{P} \frac{\partial^{2} P}{\partial r^{2}}\right) \mathrm{d} t+\rho \frac{1}{P} \frac{\partial P}{\partial r} \mathrm{~d} z \\
& =\left[\left(r-\frac{1}{2} \rho^{2} \tau^{2}\right)+\frac{1}{2} \rho^{2} \tau^{2}\right] \mathrm{d} t-\rho \tau \mathrm{d} z \\
& =r \mathrm{~d} t-\tau \mathrm{d} r
\end{aligned}
$$

An increase in $r$ reduces $P$, and the standard deviation of the return is proportional to the term to maturity.

## Yield to Maturity

The yield to maturity is

$$
R(\tau, r)=-\frac{1}{\tau} \ln P(\tau, r)=r-\frac{1}{6} \rho^{2} \tau^{2}
$$

The yield to maturity at time $t$ on a bond maturing at time $T$ is $R(T-t, r)$, which follows the stochastic differential equation

$$
\begin{aligned}
\mathrm{d} R & =-\frac{\partial R}{\partial \tau} \mathrm{~d} t+\frac{\partial R}{\partial r} \mathrm{~d} r+\frac{1}{2} \frac{\partial^{2} R}{\partial r^{2}}(\mathrm{~d} r)^{2} \\
& =-\left[-\frac{1}{3} \rho^{2}(T-t)\right] \mathrm{d} t+1 \mathrm{~d} r+\frac{1}{2} 0(\mathrm{~d} r)^{2} \\
& =\frac{1}{3} \rho^{2}(T-t) \mathrm{d} t+\mathrm{d} r .
\end{aligned}
$$

## Risk Premium

Alternatively, one might allow the possibility of a risk premium. The stochastic differential for the price takes the form

$$
\frac{\mathrm{d} P}{P}=m(\tau, r) \mathrm{d} t+s(\tau, r) \mathrm{d} z
$$

The returns for the different bonds are perfectly correlated, since each involves the same instantaneous error $\mathrm{d} z$.

## No Arbitrage

Consequently there will be an arbitrage opportunity unless the risk premium is proportional to the standard deviation:

$$
m(\tau, r)-r \propto s(\tau, r)
$$

Let $q$ denote the proportionality factor.

Financial Economics

## Term-Structure Equation

The term structure equation is

$$
m(\tau, r)-r=q s(\tau, r)
$$

which takes the form

$$
\left(-\frac{1}{P} \frac{\partial P}{\partial \tau}+\frac{1}{2} \rho^{2} \frac{1}{P} \frac{\partial^{2} P}{\partial r^{2}}\right)-r=q\left(-\rho \frac{1}{P} \frac{\partial P}{\partial r}\right) .
$$

Hence the term-structure equation (1) changes to

$$
r P=-\frac{\partial P}{\partial \tau}+q \rho \frac{\partial P}{\partial r}+\frac{1}{2} \rho^{2} \frac{\partial^{2} P}{\partial r^{2}}
$$

To express $q$ as a function of $r$ would be a natural model.

## Constant Risk Premium

For constant $q$, the bond price is

$$
P(\tau, r)=\mathrm{e}^{-r \tau-\frac{1}{2} q \rho \tau^{2}+\frac{1}{6} \rho^{2} \tau^{3}} .
$$

The yield to maturity is

$$
R(\tau, r)=-\frac{1}{\tau} \ln P(\tau, r)=r+q \rho \tau-\frac{1}{6} \rho^{2} \tau^{2}
$$

## Return

## The return is

$$
\begin{aligned}
\frac{\mathrm{d} P}{P} & =\left(-\frac{1}{P} \frac{\partial P}{\partial \tau}+\frac{1}{2} \rho^{2} \frac{1}{P} \frac{\partial^{2} P}{\partial r^{2}}\right) \mathrm{d} t+\rho \frac{1}{P} \frac{\partial P}{\partial r} \mathrm{~d} z \\
& =\left[\left(r+q \rho \tau-\frac{1}{2} \rho^{2} \tau^{2}\right)+\frac{1}{2} \rho^{2} \tau^{2}\right] \mathrm{d} t-\rho \tau \mathrm{d} z \\
& =(r+q \rho \tau) \mathrm{d} t-\tau \mathrm{d} r
\end{aligned}
$$

## References

[1] Oldrich Vasicek. An equilibrium characterization of the term structure. Journal of Financial Economics, 5(2):177-188, November 1977. HB1J69X.

