Stylized Facts

Let us state some generalizations (stylized facts) about stock returns.

Random Walk

Stock returns are a random walk or almost a random walk.
The stock return during a period is uncorrelated with the stock return in any nonoverlapping period.

Consequently a graph of a stock price against time is jagged, not smooth, as a smooth graph would imply that one can forecast the future stock price.

Cross Correlation of Stock Returns

There is a significant cross correlation of stock returns: stock prices tend to rise and fall together. Even though stock returns have little correlation with macroeconomic variables, they are correlated with one another.

4

Market Model

Typically the correlation of a stock return with a stock index is higher than the correlation with another stock return. This behavior accords with the "market model:"

$$
R_{i}=\beta_{i} R_{m}+F_{i} .
$$

The market model expresses the return R_{i} on a stock as a scalar β_{i} times the return R_{m} on a stock index plus a firm-specific term F_{i}. Here F_{i} is uncorrelated both with R_{m} and with other firm-specific terms.

Skewness and Kurtosis

Consider a random variable x with mean m and standard deviation s.

For firms i and j, that the correlation of F_{i} and F_{j} is zero means that these terms contribute nothing to the covariance between the two returns. That each term has a significant variance does, however, raise the variance of each return. Consequently the firm-specific terms make the correlation less.

Definition 1 (Skewness) The skewness is

$$
\mathrm{E}\left[(x-m)^{3}\right] / s^{3}
$$

For a normal distribution, the skewness is zero.
Definition 2 (Kurtosis) The kurtosis of the distribution is

$$
\mathrm{E}\left[(x-m)^{4}\right] / s^{4}-3 .
$$

For a normal distribution, the kurtosis is zero.
8

Financial Economics
Stock Returns

Fat Tails
The sample distribution for stock returns has "fat tails" (figure 1). Compared to a normal distribution with the same mean and variance, the sample distribution has more observations near the mean and in the tails (and hence fewer in between).

Fat tails imply that the kurtosis is positive.
All assets returns show fat tails: stocks, bonds, option prices, exchange rates, etc.

Figure 1: Fat Tails

Long-Run Variance

Let $\mathrm{e}^{R_{t}}$ denote the value at time t of one dollar invested at time $t-1$. Then

$$
\mathrm{e}^{R_{0}} \mathrm{e}^{R_{1}} \cdots \mathrm{e}^{R_{t}}=\mathrm{e}^{\Sigma_{i=0}^{t} R_{i}}
$$

is the value at time t of one dollar invested at time 0 .
A random walk implies that the R_{i} are uncorrelated for different i, so the variance of the sum is the sum of the variances,

$$
\operatorname{Var}\left(\sum_{i=0}^{t} R_{i}\right)=\sum_{i=0}^{t} \operatorname{Var}\left(R_{i}\right)
$$

Volatility

There is some persistence of volatility in stock returns.
Large returns tend to be followed by other large returns, but the sign is unpredictable, in accord with the random-walk theory. For example, a large drop in a stock price one day is often followed by a large change the next day. However the change may be either up or down, and the direction of change is unpredictable.

High or low volatility may persist for months.

