### **Stylized Facts**

Let us state some generalizations (stylized facts) about stock returns.

### **Random Walk**

- Stock returns are a random walk or almost a random walk.
- The stock return during a period is uncorrelated with the stock return in any nonoverlapping period.
- Consequently a graph of a stock price against time is jagged, not smooth, as a smooth graph would imply that one can forecast the future stock price.

## **Correlation with Macroeconomic Variables**

- Economic theory says that stock returns should be correlated with the business cycle, the interest rate, the exchange rate, etc.
- For example, an increase in the interest rate should reduce the present value of the dividends on a stock, so one would expect a negative correlation between the interest rate and the stock price.
- However in fact the correlation of stock returns with macroeconomic variables is small.

# **Cross Correlation of Stock Returns**

There is a significant cross correlation of stock returns: stock prices tend to rise and fall together. Even though stock returns have little correlation with macroeconomic variables, they are correlated with one another.

### **Stock Index**

Stock price indices (the Dow Jones Industrial Average, the NASDAQ index, etc.) fluctuate quite a bit.

This behavior would not be the case, if there were no cross correlation of stock returns. Without cross correlation, an increase in a stock price would not be related to the changes in other stock prices. When some prices rise, others would fall. The stock index would be quite stable.

### **Market Model**

Typically the correlation of a stock return with a stock index is higher than the correlation with another stock return.

This behavior accords with the "market model:"

$$R_i = \beta_i R_m + F_i.$$

The market model expresses the return  $R_i$  on a stock as a scalar  $\beta_i$  times the return  $R_m$  on a stock index plus a firm-specific term  $F_i$ . Here  $F_i$  is uncorrelated both with  $R_m$  and with other firm-specific terms.

For firms *i* and *j*, that the correlation of  $F_i$  and  $F_j$  is zero means that these terms contribute nothing to the covariance between the two returns. That each term has a significant variance does, however, raise the variance of each return. Consequently the firm-specific terms make the correlation less.

#### **Skewness and Kurtosis**

Consider a random variable *x* with mean *m* and standard deviation *s*.

**Definition 1 (Skewness)** The skewness is

$$\mathsf{E}\left[\left(x-m\right)^3\right]/s^3.$$

For a normal distribution, the skewness is zero.

Definition 2 (Kurtosis) The kurtosis of the distribution is

$$\mathrm{E}\left[\left(x-m\right)^4\right]/s^4-3.$$

For a normal distribution, the kurtosis is zero.

## **Fat Tails**

- The sample distribution for stock returns has "fat tails" (figure 1). Compared to a normal distribution with the same mean and variance, the sample distribution has more observations near the mean and in the tails (and hence fewer in between).
- Fat tails imply that the kurtosis is positive.
- All assets returns show fat tails: stocks, bonds, option prices, exchange rates, etc.

**Financial Economics** 

Stock Returns



#### **Long-Run Variance**

Let  $e^{R_t}$  denote the value at time *t* of one dollar invested at time t - 1. Then

$$\mathrm{e}^{R_0}\mathrm{e}^{R_1}\cdots\mathrm{e}^{R_t}=\mathrm{e}^{\sum_{i=0}^t R_i}$$

is the value at time t of one dollar invested at time 0.

A random walk implies that the  $R_i$  are uncorrelated for different *i*, so the variance of the sum is the sum of the variances,

$$\operatorname{Var}\left(\sum_{i=0}^{t} R_{i}\right) = \sum_{i=0}^{t} \operatorname{Var}\left(R_{i}\right).$$

Thus the variance of the return rises in proportion to the total time. Risk does not disappear for long-run investment but keeps increasing.

This relationship does hold roughly.

# Volatility

There is some persistence of volatility in stock returns.

Large returns tend to be followed by other large returns, but the sign is unpredictable, in accord with the random-walk theory. For example, a large drop in a stock price one day is often followed by a large change the next day. However the change may be either up or down, and the direction of change is unpredictable.

High or low volatility may persist for months.