
Financial Economics Runs

Runs Test

A simple statistical test of the random-walk theory is a runs

test. For daily data, a run is defined as a sequence of days in

which the stock price changes in the same direction.

For example, consider the following combination of upward

and downward price changes:

++−−+−+−−−++ .

A + sign means that the stock price increased, and a − sign

means that the stock price decreased. Thus the example has

7 runs, in 12 observations.
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Expected Number of Runs

Suppose that the random-walk theory holds: each day there is a

50% chance of an increase in the price and a 50% chance of a

decrease.

For n observations, what is the expected number of runs?
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The expected number of runs is

n
2
.

Each day the probability that a new run starts is one half, and

the probability that the current run continues is one half.
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(More precisely, the expected number of runs is

1+
n−1

2
=

n+1
2

,

since the first day necessarily starts a new run.)
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Momentum

Momentum investing rejects the random-walk theory. The

assumption is that trends continue: a price increase implies

further price increases; a price decrease implies further price

decreases. One buys when the stock price is rising and sells

when it is falling.
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According to the momentum theory, runs tend to continue.

Hence the expected number of runs is less.
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One-Tailed Test

It is natural to test the random-walk theory against the

momentum theory. A one-tailed test is natural, as the

momentum theory predicts fewer runs than the random-walk

theory.
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Critical Value

If the random-walk theory is true, the expected number of runs

is n/2, and the standard deviation of the number of runs is
√

n
2

.

With probability 5%, the number of runs will lie more than

1.64 standard deviations below the expected value, and this

number is the critical value.
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Example

For n = 400, then

1.64
√

n
2

= 16.4.

The expected number of runs is 200.

Hence one rejects the null hypothesis that the random-walk

theory is true if the number of runs is 183 or less; this low

number could occur by chance only 5% of the time.

If the number of runs is 184 or more, than one accepts the null

hypothesis. This number is close enough to 200 to be

compatible with the random-walk theory.
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Technical Note

A possibility is that on certain days the stock price does not

change. One can deal with this possibility just by ignoring the

observations on these days.
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Too Many Long Runs?

Some observers think that too many long runs occur, too many

for the random-walk theory to be true.
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Runs Probability

The table shows the probability of runs of different lengths; of

course the probabilities sum to one.

Length Probability

1 1
2

2 1
4

3 1
8

· · ·
As the length rises by one, the probability falls in half, since

there is a 50% chance that the run ends.
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Average Length of a Run

The mean length of a run is therefore
(

1× 1
2

)
+

(
2× 1

4

)
+

(
3× 1

8

)
+ · · ·

=
(

1
2

+
1
4

+
1
8

+ · · ·
)

+
(

1
4

+
1
8

+ · · ·
)

+
(

1
8

+ · · ·
)

+ · · ·

= 1+
1
2

+
1
4

+ · · ·
= 2.
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This result agrees with what we knew already: each day there

is a 50% chance of starting a new run, so the mean length of a

run must be
1
1
2

= 2.
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Probability of a Run

The unconditional probability per day of a run of length n or

more is therefore
1
2n .

If 256 = 28 were the number of business days per year, then the

unconditional mean number of runs of length n or more per

year would be
1
2n ×28 = 28−n.
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Long Runs of the Dow Jones Industrial Average

During the period 1896-2006, the number of runs of 11 days or
more was 8. According to the random-walk model, the
expected number was

28−11 ×111 ≈ 14,

so the number of long runs was lower than expected!

The longest run was 14 days, whereas the expected number of
runs of 14 days or more was

28−14 ×111 ≈ 1.7,

a reasonable agreement.
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Probability Not One Half

Since stock prices tend to rise in the long run, the probability of

a price increase each day must in fact be slightly more than one

half. Let
1
2

+ x

denote this probability, so

1
2
− x

is the probability of a price decline.
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Then the unconditional probability of starting a new run on a

given day is
(

1
2

+ x

)(
1
2
− x

)
+

(
1
2
− x

)(
1
2

+ x

)
=

1
2
−2x2.

Since the effect of x is second-order, the probability is nearly

one half, as long as x is not too large.
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