Financial Economics	Pricing Kernel and Expectations Kernel	Financial Economics	Pricing Kernel and Expectations Kernel
		P	ricing Kernel
Payoff Space The set of possible payoffs is the range $\mathbf{R}(\mathbf{A})$. This payoff		By the law of one price, two portfolios with the same payoff y have the same cost. Cost is linear, so there exists some linear function $\langle p, y \rangle$ on the payoff space that equals the cost of the portfolio. Necessarily $p \in \mathbb{R}(A)$ is unique.	
space is a subspace of the state space and is a Euclidean space in its own right.		For a portfolio x such that $y = Ax$, the cost	
		$\langle oldsymbol{v},oldsymbol{x} angle = \langle oldsymbol{p},oldsymbol{y} angle = \langle oldsymbol{p},oldsymbol{A}oldsymbol{x} angle ,$	
		so p is a stochastic disco pricing kernel.	unt factor. One refers to p as the
	1		2
Financial Economics	Pricing Kernel and Expectations Kernel	Financial Economics Formula f	Pricing Kernel and Expectations Kernel for the Pricing Kernel
		For any stochastic discount factor,	
		$A^{ op} y = v.$	
Definition 1 (Pricing Ke stochastic discount factor	ernel) <i>The pricing kernel is the unique r in the payoff space.</i>	There exists a solution <i>y</i> if and only if the law of one price holds. The solution set is then	
		{ <i>A</i>	$ ^{\top +} \boldsymbol{\nu} \Big\} + \mathbf{N} \left(\boldsymbol{A}^{\top} \right). $ (1)
		By the fundamental theo payoff space $R(A)$ are o be the expression in brace	forem of linear algebra, N (A^{\top}) and the rthogonal, so the pricing kernel must ces.
	3		4
Financial Economics	Pricing Kernel and Expectations Kernel	Financial Economics	Pricing Kernel and Expectations Kernel
		Least-Sq	uares Interpretation
Theorem 2 (Pricing Kernel) <i>The pricing kernel is</i> $p = A^{\top +}v.$ (2)		Consider the least-square variable v on the independent of the coefficients p .	es linear regression of the dependent ident variables A^{\top} with regression
		Problem 3 (Pricing Ker	mel as Least Squares)
Even if there is no opportunity for profitable arbitrage, it is not necessary that $p \gg 0$.		$\min_{p} \langle$	$\left(\boldsymbol{v} - \boldsymbol{A}^{\top} \boldsymbol{p}, \boldsymbol{v} - \boldsymbol{A}^{\top} \boldsymbol{p} \right).$
		The solution set for the r the unique solution in R	regression coefficients is (1) , and (2) is (A) .
	5		6

Financial Economics	Pricing Kernel and Expectations Kernel	Financial Economics	Pricing Kernel and Expectations Kernel
Expect	tations Kernel		
The expected payoff on portfolio x is $\langle 1, Ax \rangle$.		If there exists a risk-free	portfolio (if $1 \in R(A)$), then of course
Since expectation is linear, the expected payoff is some linear function $\langle e, v \rangle$ on the payoff space, for a unique e .		e = 1. If there is no risk-free point	ttfolio, necessarily $e \neq 1$.
One refers to <i>e</i> as the <i>expectations kernel</i> .			
	7		8
Financial Economics	Pricing Kernel and Expectations Kernel	Financial Economics	Pricing Kernel and Expectations Kernel
		Since this condition must	hold for any x , therefore
For any <i>x</i> , <i>e</i> must satisfy			$\boldsymbol{A}^{\top}\boldsymbol{e} = \boldsymbol{A}^{\top}\boldsymbol{1}.$ (3)
$\langle 1, \mathcal{A} \rangle$	$\langle \mathbf{k} \mathbf{x} angle = \langle \mathbf{e}, \mathbf{A} \mathbf{x} angle,$	Since e necessarily exists, this equation has a solution. The	
so $\left\langle A^{\top}1,x\right\rangle = \left\langle A^{\top}\boldsymbol{e},x\right\rangle.$		solution set is $\left\{ A^{\top +} \right\}$	$\left\{ A^{\top} 1 \right\} + \mathrm{N} \left(A^{\top} \right).$
		By the fundamental theorem of linear algebra, N (A^{\top}) is orthogonal to the payoff space R (A), so e must be the expression in braces.	
	9		10
Financial Economics	Pricing Kernel and Expectations Kernel	Financial Economics	Pricing Kernel and Expectations Kernel
		Least-Squ	ares Interpretation
		One can interpret the exp least-squares problem.	ectations kernel as the solution to a
Theorem 4 (Expectations Kernel)		Problem 5 (Expectations Kernel as Least Squares)	
$e = A^{\top +} A^{\top} 1.$		$\min_{\boldsymbol{e}\inR(\boldsymbol{A})}\left<1-\boldsymbol{e},1-\boldsymbol{e}\right>.$	
		Interpret <i>e</i> as the fitted variables <i>A</i> . That $e \in \mathbb{R}$ (<i>x</i> coefficients <i>x</i> .	lues of the least-squares linear ent variable 1 on the dependent A) means that $e = Ax$ for regression
	11		12

Financial Economics	Pricing Kernel and Expectations Kernel	Financial Economics	Pricing Kernel and Expectations Kernel
The condition (3) says that the residual $1 - e$ is orthogonal to the dependent variables. Hence the necessary and sufficient conditions for least-squares linear regression are fulfilled. The expectations kernel (3) is the unique solution to least-squares problem (5).		Sum of SquaresSince the explained sum of squares $\langle e, e \rangle$ in (5) is necessarilyless than or equal to the total sum of squares $\langle 1, 1 \rangle = 1$,therefore $\langle e, e \rangle \leq 1$,with equality only if $e = 1$.	
	13		14
Financial Economics	Pricing Kernel and Expectations Kernel	Financial Economics	Pricing Kernel and Expectations Kernel
Complete Markets The asset market is complete if the payoff space is the state space; any payoff in the state space can be attained by some portfolio. Since <i>A</i> is onto, $A^+ = A^\top (AA^\top)^{-1}$.		The pricing kernel is then $p = A^{\top +} v = (AA^{\top})^{-1} Av,$ in accord with its least-squares interpretation. The expectations kernel is $e = A^{\top +} A^{\top} 1 = \left[(AA^{\top})^{-1} A \right] A^{\top} 1 = 1,$ as required.	
	15		16
Financial Economics	Pricing Kernel and Expectations Kernel	Financial Economics For an investor who wants t utility is defined on the state the following problem.	Pricing Kernel and Expectations Kernel to maximize utility u , in which e space, his portfolio choice solves
Standard Consumer Theory		Problem 6 (Portfolio Choi	ice)
Via the pricing kernel one can effectively reduce portfolio choice to the standard theory of the consumer. The pricing kernel plays the role of the price vector.		n subject to the budget constr ($\max_{\mathbf{x}} u(A\mathbf{x})$ <i>raint</i> $\langle \mathbf{v}, \mathbf{x} \rangle = w.$

This problem is almost the standard theory of the consumer, but not quite, since the payoff transformation *A* is present.

Financial Economics Pricing Kernel and Expectations Kernel	Financial Economics Pricing Kernel and Expectations Kernel	
Clearly a utility function <i>u</i> defined on the state space induces a utility function <i>u</i> defined only on the payoff space.	Differential for Utility If <i>u</i> varies smoothly as the payoff changes, one can define a differential u_y defined in the payoff space that shows how utility varies as the payoff changes: if the payoff changes by a small amount $y\Delta t$ (here Δt is very small), then to first order utility changes by $\langle u_y, y \rangle \Delta t.$ Even though there is no natural basis in the payoff space, a payoff <i>y</i> and the differential u_y are nevertheless uniquely defined, coordinate-free vectors.	
19	20	
Financial Economics Pricing Kernel and Expectations Kernel	Financial Economics Pricing Kernel and Expectations Kernel	
Standard Consumer Choice		
One can redefine the portfolio choice problem (6) as standard consumer choice.	The first-order condition for utility maximization is the standard condition $u_y \propto p$, in which the positive proportionality factor is the marginal utility of wealth.	
Problem 7 (Portfolio Choice)		
$\max_{\mathbf{y}} u(\mathbf{y})$ subject to the budget constraint $\langle \mathbf{p}, \mathbf{y} \rangle = w.$		
21	22	