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Black-Scholes Option Pricing

The pricing kernel furnishes an alternate derivation of the

Black-Scholes formula for the price of a call option. Arbitrage

is again the foundation for the theory.
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Risk-Free Asset and Stock

The risk-free asset has the return

r dt;

a one-dollar investment at t is worth 1+ r dt at t +dt.

The stock has the return

dst

st
= (r + µ) dt +σ dzt ;

a one-dollar investment at t is worth 1+(r + µ) dt +σ dzt at

t +dt.
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Stochastic Discount Factor

Let pt denote a stochastic discount factor.

For an asset with price qt and future payments dt ,

ptqt =
∫ ∞

t
Et (pτdτ) dτ ,

the present discounted value of the future payments.
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Then

ptqt = ptdt dt +
∫ ∞

t+dt
Et (pτ dτ) dτ

= ptdt dt +Et

(∫ ∞

t+dt
pτdτ dτ

)

= ptdt dt +Et (pt+dtqt+dt) .
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Stock Pricing

For the stochastic discount factor to price the stock,

ptst = Et (pt+dt st+dt) .

Hence

ptst = Et (pt+dt st+dt)

= Et [(pt +dpt)(st +dst)]

= Et (ptst + st dpt + pt dst +dpt dst) .
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Dividing by ptst and cancelling gives

0 = Et

(
dpt

pt
+

dst

st
+

dpt

pt

dst

st

)
. (1)
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Risk-Free Asset Pricing

For the stochastic discount factor to price the risk-free asset,

pt = Et [pt+dt (1+ r dt)] ,

so

pt = Et [(pt +dpt)(1+ r dt)]

= Et (pt + ptr dt +dpt) ,

since the second-order term is zero. Dividing by pt and
cancelling gives

0 = Et

(
r dt +

dpt

pt

)
. (2)
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Pricing Kernel

The pricing kernel pt is a stochastic discount factor of the form

dpt

pt
= a dt +b dzt ,

the span of the returns on the risk-free asset and the stock.
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By (2), for the pricing kernel to price the risk-free asset

requires a = −r.
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By (1), for the pricing kernel to price the stock requires

0 = Et

(
dpt

pt
+

dst

st
+

dpt

pt

dst

st

)

= Et {(−r dt +b dzt)+ [(r + µ) dt +σ dzt ]

+(−r dt +b dzt) [(r + µ) dt +σ dzt ]}
= Et [−r dt +(r + µ) dt +bσ dt] ,

so b = −µ/σ .
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Thus the pricing kernel follows the stochastic differential

equation
dpt

pt
= −r dt − µ

σ
dzt .

For the initial condition p0 = 1, the solution is

ln pt =
[
−r− 1

2

( µ
σ

)2
]

t − µ
σ

zt .
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Arbitrage

Following Black and Scholes, assume that the call price ct is a

function of the stock price. Then its return lies in the span of

the returns of the stock price and the risk-free asset.

The absence of arbitrage then requires that the return on the

call can be priced by the pricing kernel for the stock and the

risk-free asset.
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Black-Scholes Partial Differential Equation

If ct = c(st ,τ) (τ is the time to expiration), by the second-order
Taylor series expansion

dct = −cτ dt + cs dst +
1
2

css (dst)
2

= −cτ dt + csst [(r + µ) dt +σ dzt ]

+
1
2

csss
2
t [(r + µ) dt +σ dzt ]

2 .

For the pricing kernel to price the call,

0 = Et

(
dpt

pt
+

dct

ct
+

dpt

pt

dct

ct

)
.
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Hence

0 = Et

[(
−r dt − µ

σ
dzt

)
+

dct

ct
+

(
−r dt − µ

σ
dzt

) dct

ct

]
.

=
{
−r +

1
ct

[
−cτ + csst (r + µ)+

1
2

csss
2
t σ2 − µ

σ
csstσ

]}
dt,

which yields the Black-Scholes partial differential equation

0 = −r ct − cτ + csst r +
1
2

csss
2
t σ2.

(Here ct is the call price at time t, but cτ is the partial derivative

of the price with respect to τ .)
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Present Discounted Value

Equivalently, the call price is the present value of its exercise

value at expiration, using the pricing kernel as the stochastic

discount factor.

Theorem 1

c(s0, t) = E0 [ptc(st ,0)] . (3)

Here

c(st ,0) = max [st − x,0] ,

the value at expiration with striking price x.
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Computation of the Expected Value

Since

st = s0 exp

[(
r + µ − 1

2
σ2

)
t +σzt

]
,

therefore st ≥ x for

zt ≥ 1
σ

[
ln(x/s0)−

(
r + µ − 1

2
σ2

)
t

]
:= z. (4)
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From our previous work,

ptst = s0 exp

[
−1

2

(
σ − µ

σ

)2
t +

(
σ − µ

σ

)
zt

]
(5)

ptx = xe−rt exp

[
−1

2

( µ
σ

)2
t − µ

σ
zt

]
. (6)

We calculate the expected value of these expressions over the

range (4).
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The probability density function of zt is

1√
2πt

exp

(
−1

2
z2
t /t

)
.

When one integrates to find the expectations, the quadratic in zt

combines with the terms linear in zt in the exponentials (5)-(6)

to form a quadratic. This quadratic is again a normal

probability density function, still with variance t, but the mean

is non-zero.
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E0 (ptst) over zt ≥ z

=
∫ ∞

z

{
s0 exp

[
−1

2

(
σ − µ

σ

)2
t +

(
σ − µ

σ

)
z

]

1√
2πt

exp

(
−1

2
z2/t

)
dz

}

= s0

∫ ∞

z

1√
2πt

exp

{
−1

2

[
z−

(
σ − µ

σ

)
t
]2

/t

}
dz

= s0F
{[(

σ − µ
σ

)
t − z

]
/
√

t
}

in which F is the cumulative distribution function for a normal

with mean zero and variance one.
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Substituting for z gives

E0 (ptst) over zt ≥ z

= s0F
{(

σ − µ
σ

)√
t

+
[

ln(s0/x)+
(

r + µ − 1
2

σ2
)

t

]
/σ

√
t

}

= s0F

{[
ln(s0/x)+

(
r +

1
2

σ2
)

t

]
/σ

√
t

}
.

Here µ has cancelled out!
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E0 (ptx) over zt ≥ z

=
∫ ∞

z

{
xe−rt exp

[
−1

2

( µ
σ

)2
t − µ

σ
z

]

1√
2πt

exp

(
−1

2
z2/t

)
dz

}

= xe−rt
∫ ∞

z

1√
2πt

exp

[
−1

2

(
z+

µ
σ

t
)2

/t

]
dz

= xe−rtF
[(

−µ
σ

t − z
)

/
√

t
]
.
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Substituting for z gives

E0 (ptx) over zt ≥ z

= xe−rtF

{
−µ

σ
√

t +
[

ln(s0/x)+
(

r + µ − 1
2

σ2
)

t

]
/σ

√
t

}

= xe−rtF

{[
ln(s0/x)+

(
r− 1

2
σ2

)
t

]
/σ

√
t

}
.

Again µ has cancelled out!
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Black-Scholes Formula

The price of the call option is the difference in the two present

discounted values.

Theorem 2 (Black-Scholes) The price of the call option is

E0 (pt max [st − x,0])

= s0F

{[
ln(s0/x)+

(
r +

1
2

σ2
)

t

]
/σ

√
t

}

− xe−rtF

{[
ln(s0/x)+

(
r− 1

2
σ2

)
t

]
/σ

√
t

}
.
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