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Black-Scholes Option Pricing

The pricing kernel furnishes an alternate derivation of the
Black-Scholes formulafor the price of acall option. Arbitrage
is again the foundation for the theory.
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Risk-Free Asset and Stock
The risk-free asset has the return
rdt;
aone-dollar investment at t isworth 1+ r dt at t + dt.
The stock has the return

d
;S{:(r+u)dt+6dzt;

aone-dollar investment at t isworth 1+ (r + u) dt + o dz at
t+dt.
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Stochastic Discount Factor

Let p; denote a stochastic discount factor.
For an asset with price g and future payments d,
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Then

Ok = ptdth—/ E. (p.d,) d
t+4dt

PLok = / E¢ (p-d:) dr, vt
t = Pelh At + Bt (Pri-atGhrot) -
the present discounted value of the future payments.
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Stock Pricing

For the stochastic discount factor to price the stock,

Pts = B (ProctStat) -
Hence
Pts = B (PryctStot)

=E[(pt+dp) (st +ds)]
=E(ps+sdp+ pds +dp ds) .

Dividing by prs and cancelling gives

dp ds  dpd
ozEt<—p‘+—5‘+—p‘—s‘>. 1)
Ps Pos
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Risk-Free Asset Pricing
For the stochastic discount factor to price the risk-free asset,

Pt = Et [Prya (1+rdb)],

pr = E[(pt+dpy) (1+rdt)]
=E(p+prdt+dp),

since the second-order term is zero. Dividing by p; and
cancelling gives

0=F (rdt+%p‘>. )
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Pricing Kernel

The pricing kernel p; is a stochastic discount factor of the form
d—pt —adt+bdz,
Pt

the span of the returns on the risk-free asset and the stock.
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By (2), for the pricing kernel to price the risk-free asset
requiresa= —r.
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By (1), for the pricing kernel to price the stock requires

d d dp: d
o:Et(_pr+_&+_pr_Sr>

Pt S Pt &
=E{(—rdt+bdz)+[(r+u)dt+ocdz]

+(—rdt+bdz)[(r+u)dt+odz]}
=E¢[-rdt+(r+u)dt+bodt],

sob=-u/o.
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Thus the pricing kernel follows the stochastic differential
eguation

g g
Pt o

For theinitial condition pg = 1, the solutionis

=[5 b
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Arbitrage

Following Black and Scholes, assume that the call price ¢; isa
function of the stock price. Then itsreturn liesin the span of
the returns of the stock price and the risk-free asset.

The absence of arbitrage then requires that the return on the
call can be priced by the pricing kernel for the stock and the
risk-free asset.
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Black-Scholes Partial Differential Equation

If ¢t =c(s, 1) (7 isthetimeto expiration), by the second-order

Taylor series expansion

1
do = —Crdt + csdls + s (ds)

= —Cedt+Cs& [(r +u) dt + o dz]

+Z csssz (r+u) dt+ o dz)?.

For the pricing kernel to price the call,
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Hence

dc

OzEt{(rdt ”dzt>+a+( ot — “dzt)dct]

C

tese] o

which yields the Black-Scholes partia differential equation

1
:{—r+a {—Cr—i‘csst( )+ c$§6

1
0= —Cr+CST + 50507

(Herec; isthecall price at timet, but c; isthe partial derivative
of the price with respect to 7.)
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Present Discounted Value

Equivalently, the call price is the present value of its exercise
value at expiration, using the pricing kernel as the stochastic
discount factor.

Theorem 1

c(so,t) = Eo[pc(s,0)]. ©)

Here
c(s,0) = max[s —x,0],

the value at expiration with striking price x.
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Computation of the Expected Value
Since
Y :soeXp[<r+u—%oz>t+czt} ,

therefore s > x for

ZtZ(];|:|n(X/SO)_<r+.u_;GZ)t:| =z (4)
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From our previous work,

ps—wep[3 (0-4) "t (0-4)] o

1 2
px = xe "exp [—5 (%) t— %zt] . (6)

We cal culate the expected value of these expressions over the
range (4).
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The probability density function of z is

1 1
——exp| —=Z/t ).
=P < >4/ >
When one integrates to find the expectations, the quadratic in z
combines with the termslinear in z in the exponentials (5)-(6)
to form aquadratic. This quadratic is again a normal

probability density function, still with variancet, but the mean
is non-zero.

18




Financial Economics Pricing Kernel Option Pricing

Eo(pis) overz >z
= {weo[ 3 (e 5) e (- 5)4
ol-1)e]
o[ el -3 (o- L) n}e
=< {[(o-5)t-7

inwhich F isthe cumulative distribution function for anormal

with mean zero and variance one.
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Substituting for z gives

Eo(ptst) overz >z

=sof {(0- ) Ve
+[in(so/ + <r+u—§ o?)1] fovi}
s o)
Here u has cancelled out!
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Eo(ptx) overz >z
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Substituting for z gives
Eo (pix) overz >z

—xe "'F {—%\/H [In(so/x)Jr (r+u—}6 ) }/G\f}

—xe "F { [In(so/x) + <r - %02> t} /G\ﬁ} :

Again u has cancelled out!
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Black-Scholes Formula

The price of the call option isthe difference in the two present
discounted values.

Theorem 2 (Black-Scholes) The price of the call optionis
Eo (Pt max[s; —x,0])

=sF { [ln(so/x) + (r + %62> t] /0\/f}

—xe "F { [In(so/x)Jr (r—ga > ]/0'\/}
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