Financial Economics	Pricing Kernel Option Pricing	Financial Economics	Pricing Kernel Option Pricing
		Risk-Free Asset and Stock	
		The risk-free asset has the return	
Black-Scholes Option Pricing The pricing kernel furnishes an alternate derivation of the Black-Scholes formula for the price of a call option. Arbitrage		r dt; a one-dollar investment at t is worth $1 + r dt$ at $t + dt$. The stock has the return	
is again the foundation for the	theory.	ds_t	
		$\frac{1}{s_t} = (r+\mu) \mathrm{d}t + \sigma \mathrm{d}z_t;$	
		a one-dollar investment at t t + dt.	is worth $1 + (r + \mu) dt + \sigma dz_t$ at
1			2
Financial Economics	Pricing Kernel Option Pricing	Financial Economics	Pricing Kernel Option Pricing
Stachastic Discount Factor			
Stochastic Discount Factor		Then $p_t q_t = p_t d_t dt + \int_{t+dt}^{\infty} \mathbf{E}_t \left(p_\tau d_\tau \right) d\tau$ $= p_t d_t dt + \mathbf{E}_t \left(\int_{t+dt}^{\infty} p_\tau d_\tau d\tau \right)$ $= p_t d_t dt + \mathbf{E}_t \left(p_{t+dt} q_{t+dt} \right).$	
Let p_t denote a stochastic discount factor.			
For an asset with price q_t and future payments a_t ,			
$p_t q_t = \int_t \operatorname{E}_t (p_{\tau} d_{\tau}) \mathrm{d} au,$			
the present discounted value of the future payments.			
3		4	
Financial Economics	Pricing Kernel Option Pricing	Financial Economics	Pricing Kernel Option Pricing
Stock Pricing			
For the stochastic discount factor to price the stock,			
$p_t s_t = \mathbf{E}_t \left(p_{t+\mathrm{d}t} s_{t+\mathrm{d}t} \right).$		Dividing by $p_t s_t$ and cancell	ling gives
Hence		$0 = \mathbf{E}_t \left(\frac{\mathrm{d} p_t}{p_t} \right)$	$\frac{ds_t}{ds_t} + \frac{ds_t}{s_t} + \frac{dp_t}{p_t} \frac{ds_t}{s_t} \bigg). $ (1)
$p_t s_t = \mathbf{E}_t \left(p_{t+\mathrm{d}t} s_{t+\mathrm{d}t} \right)$			
$= \mathbf{E}_t \left[\left(p_t + \mathbf{d} p_t \right) \left(s_t + \mathbf{d} s_t \right) \right]$			
$= \mathbf{E}_t \left(p_t s_t + s_t \mathrm{d} p_t + p_t \mathrm{d} s_t + \mathrm{d} p_t \mathrm{d} s_t \right).$			
5			6

Financial Economics Pricing Kernel Option Pricing Risk-Free Asset Pricing	Financial Economics Pricing Kernel Option Pricing	
For the stochastic discount factor to price the risk-free asset,		
$p_t = \mathbf{E}_t \left[p_{t+\mathrm{d}t} \left(1 + r \mathrm{d}t \right) \right],$	Pricing Kernel	
SO	The pricing kernel p_t is a stochastic discount factor of the form	
$p_t = \mathbf{E}_t \left[\left(p_t + \mathrm{d} p_t \right) \left(1 + r \mathrm{d} t \right) \right]$	$\frac{\mathrm{d}p_t}{\mathrm{d}t} = a \mathrm{d}t + b \mathrm{d}z_t$	
$= \mathbf{E}_t \left(p_t + p_t r \mathrm{d}t + \mathrm{d}p_t \right),$	p_t	
since the second-order term is zero. Dividing by p_t and cancelling gives	the span of the returns on the risk-free asset and the stock.	
$0 = \mathbf{E}_t \left(r \mathrm{d}t + \frac{\mathrm{d}p_t}{p_t} \right). \tag{2}$	8	
Financial Economics Pricing Kernel Option Pricing	Financial Economics Pricing Kernel Option Pricing	
By (2), for the pricing kernel to price the risk-free asset requires $a = -r$.	By (1), for the pricing kernel to price the stock requires $0 = E_t \left(\frac{dp_t}{p_t} + \frac{ds_t}{s_t} + \frac{dp_t}{p_t} \frac{ds_t}{s_t} \right)$ $= E_t \left\{ (-r dt + b dz_t) + [(r + \mu) dt + \sigma dz_t] + (-r dt + b dz_t) [(r + \mu) dt + \sigma dz_t] \right\}$ $= E_t \left[-r dt + (r + \mu) dt + b\sigma dt \right],$ so $b = -\mu/\sigma$.	
9	10	
Financial Economics Pricing Kernel Option Pricing	Financial Economics Pricing Kernel Option Pricing	
Thus the pricing kernel follows the stochastic differential equation $\frac{\mathrm{d}p_t}{p_t} = -r \mathrm{d}t - \frac{\mu}{\sigma} \mathrm{d}z_t.$ For the initial condition $p_0 = 1$, the solution is $\ln p_t = \left[-r - \frac{1}{2} \left(\frac{\mu}{\sigma}\right)^2\right] t - \frac{\mu}{\sigma} z_t.$	Arbitrage Following Black and Scholes, assume that the call price c_t is a function of the stock price. Then its return lies in the span of the returns of the stock price and the risk-free asset. The absence of arbitrage then requires that the return on the call can be priced by the pricing kernel for the stock and the risk-free asset.	
11	12	

Financial Economics

Pricing Kernel Option Pricing

Black-Scholes Partial Differential Equation

If $c_t = c(s_t, \tau)$ (τ is the time to expiration), by the second-order Taylor series expansion

$$dc_t = -c_\tau dt + c_s ds_t + \frac{1}{2}c_{ss} (ds_t)^2$$

= $-c_\tau dt + c_s s_t [(r+\mu) dt + \sigma dz_t]^2$
+ $\frac{1}{2}c_{ss}s_t^2 [(r+\mu) dt + \sigma dz_t]^2.$

For the pricing kernel to price the call,

$$0 = \mathbf{E}_t \left(\frac{\mathrm{d}p_t}{p_t} + \frac{\mathrm{d}c_t}{c_t} + \frac{\mathrm{d}p_t}{p_t} \frac{\mathrm{d}c_t}{c_t} \right).$$
13

Financial Economics

Pricing Kernel Option Pricing

Present Discounted Value

Equivalently, the call price is the present value of its exercise value at expiration, using the pricing kernel as the stochastic discount factor.

Theorem 1

$$c(s_0,t) = \mathbf{E}_0[p_t c(s_t,0)].$$
 (3)

Here

 $c(s_t,0) = \max\left[s_t - x, 0\right],$

the value at expiration with striking price x.

15

Financial Economics

Pricing Kernel Option Pricing

From our previous work,

$$p_t s_t = s_0 \exp\left[-\frac{1}{2}\left(\sigma - \frac{\mu}{\sigma}\right)^2 t + \left(\sigma - \frac{\mu}{\sigma}\right) z_t\right]$$
(5)

$$p_t x = x \mathrm{e}^{-rt} \exp\left[-\frac{1}{2} \left(\frac{\mu}{\sigma}\right)^2 t - \frac{\mu}{\sigma} z_t\right]. \tag{6}$$

We calculate the expected value of these expressions over the range (4).

Pricing Kernel Option Pricing

Hence

Financial Economics

$$0 = \mathbf{E}_t \left[\left(-r \, \mathrm{d}t - \frac{\mu}{\sigma} \mathrm{d}z_t \right) + \frac{\mathrm{d}c_t}{c_t} + \left(-r \, \mathrm{d}t - \frac{\mu}{\sigma} \mathrm{d}z_t \right) \frac{\mathrm{d}c_t}{c_t} \right].$$
$$= \left\{ -r + \frac{1}{c_t} \left[-c_\tau + c_s s_t \left(r + \mu \right) + \frac{1}{2} c_{ss} s_t^2 \sigma^2 - \frac{\mu}{\sigma} c_s s_t \sigma \right] \right\} \mathrm{d}t,$$

which yields the Black-Scholes partial differential equation

$$0 = -rc_t - c_\tau + c_s s_t r + \frac{1}{2} c_{ss} s_t^2 \sigma^2.$$

(Here c_t is the call price at time t, but c_{τ} is the partial derivative of the price with respect to τ .)

14

Financial Economics

Pricing Kernel Option Pricing

Computation of the Expected Value

Since

$$s_t = s_0 \exp\left[\left(r+\mu-\frac{1}{2}\sigma^2\right)t+\sigma_{z_t}\right],$$

therefore $s_t \ge x$ for

$$z_t \ge \frac{1}{\sigma} \left[\ln\left(x/s_0\right) - \left(r + \mu - \frac{1}{2}\sigma^2\right) t \right] := \underline{z}.$$
 (4)

16

Pricing Kernel Option Pricing

The probability density function of z_t is

$$\frac{1}{\sqrt{2\pi t}}\exp\left(-\frac{1}{2}z_t^2/t\right).$$

When one integrates to find the expectations, the quadratic in z_t combines with the terms linear in z_t in the exponentials (5)-(6) to form a quadratic. This quadratic is again a normal probability density function, still with variance *t*, but the mean is non-zero.

Financial Economics

(3) t

Financial Economics

 $E_0(p_t s_t)$ over $z_t > z_t$

with mean zero and variance one.

Financial Economics

Pricing Kernel Option Pricing

Financial Economics

Pricing Kernel Option Pricing

Substituting for <u>z</u> gives

$$E_{0}(p_{t}s_{t}) \text{ over } z_{t} \geq \underline{z}$$

$$= s_{0}F\left\{\left(\sigma - \frac{\mu}{\sigma}\right)\sqrt{t} + \left[\ln\left(s_{0}/x\right) + \left(r + \mu - \frac{1}{2}\sigma^{2}\right)t\right]/\sigma\sqrt{t}\right\}$$

$$= s_{0}F\left\{\left[\ln\left(s_{0}/x\right) + \left(r + \frac{1}{2}\sigma^{2}\right)t\right]/\sigma\sqrt{t}\right\}$$

Here μ has cancelled out!

20

Financial Economics

Pricing Kernel Option Pricing

$$\begin{split} & \operatorname{E}_{0}\left(p_{t}x\right) \text{ over } z_{t} \geq \underline{z} \\ &= \int_{\underline{z}}^{\infty} \left\{ x \mathrm{e}^{-rt} \exp\left[-\frac{1}{2}\left(\frac{\mu}{\sigma}\right)^{2}t - \frac{\mu}{\sigma}z\right] \\ & \frac{1}{\sqrt{2\pi t}} \exp\left(-\frac{1}{2}z^{2}/t\right) \mathrm{d}z \right\} \\ &= x \mathrm{e}^{-rt} \int_{\underline{z}}^{\infty} \frac{1}{\sqrt{2\pi t}} \exp\left[-\frac{1}{2}\left(z + \frac{\mu}{\sigma}t\right)^{2}/t\right] \mathrm{d}z \\ &= x \mathrm{e}^{-rt} F\left[\left(-\frac{\mu}{\sigma}t - \underline{z}\right)/\sqrt{t}\right]. \end{split}$$

 $= \int_{z}^{\infty} \left\{ s_{0} \exp\left[-\frac{1}{2} \left(\sigma - \frac{\mu}{\sigma} \right)^{2} t + \left(\sigma - \frac{\mu}{\sigma} \right) z \right] \right\}$

 $= s_0 \int_{z}^{\infty} \frac{1}{\sqrt{2\pi t}} \exp\left\{-\frac{1}{2}\left[z - \left(\sigma - \frac{\mu}{\sigma}\right)t\right]^2/t\right\} dz$

in which F is the cumulative distribution function for a normal

19

 $\frac{1}{\sqrt{2\pi t}}\exp\left(-\frac{1}{2}z^2/t\right)\mathrm{d}z$

 $= s_0 F\left\{ \left[\left(\sigma - \frac{\mu}{\sigma}\right) t - \underline{z} \right] / \sqrt{t} \right\}$

21

Financial Economics

Pricing Kernel Option Pricing

Pricing Kernel Option Pricing

Black-Scholes Formula

The price of the call option is the difference in the two present discounted values.

Theorem 2 (Black-Scholes) The price of the call option is

$$E_0 \left(p_t \max \left[s_t - x, 0 \right] \right)$$

= $s_0 F \left\{ \left[\ln \left(s_0 / x \right) + \left(r + \frac{1}{2} \sigma^2 \right) t \right] / \sigma \sqrt{t} \right\}$
 $- x e^{-rt} F \left\{ \left[\ln \left(s_0 / x \right) + \left(r - \frac{1}{2} \sigma^2 \right) t \right] / \sigma \sqrt{t} \right\}.$

Substituting for z gives

$$E_{0}(p_{t}x) \text{ over } z_{t} \geq \underline{z}$$

$$= xe^{-rt}F\left\{-\frac{\mu}{\sigma}\sqrt{t} + \left[\ln(s_{0}/x) + \left(r + \mu - \frac{1}{2}\sigma^{2}\right)t\right]/\sigma\sqrt{t}\right\}$$

$$= xe^{-rt}F\left\{\left[\ln(s_{0}/x) + \left(r - \frac{1}{2}\sigma^{2}\right)t\right]/\sigma\sqrt{t}\right\}.$$

Again μ has cancelled out!

22