Financial Economics Pricing Kernel Option Pricing

Black-Scholes Option Pricing

The pricing kernel furnishes an alternate derivation of the
Black-Scholes formulafor the price of acall option. Arbitrage
IS again the foundation for the theory.
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Risk-Free Asset and Stock

The risk-free asset has the return
rat;

aone-dollar investment at t isworth 1+ rdt at t + dt.
The stock has the return

d
gz(wu)dwadzt;

aone-dollar investment at t isworth 1+ (r + y) dt + odz at
t 4 dt.
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Stochastic Discount Factor

Let pr denote a stochastic discount factor.

For an asset with price g and future payments dk,

ptCIt:/t E: (p.d;) dr,

the present discounted value of the future payments.
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Then

PtCk = Prck dt + E; (p;d;) dt
t4-qt

(00)

= Pk Ot + E ( Prd; dT)
t-+dt

= Pr0k dt + Bt (PryctOrot) -
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Stock Pricing

For the stochastic discount factor to price the stock,

PtS = Et (PrratS+at) -

Hence

S = E (ProatSrdt)
=E [(pt+dpt) (s +ds)]
= E (ps +Ssdpe+ prds +dprds).
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Dividing by pts and cancelling gives

0:Et<dlot | oS | ap: dst). (1)
Pt S Pt S
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Risk-Free Asset Pricing
For the stochastic discount factor to price the risk-free asset,

Pt = Et [Pryae (14rdt)],

Pt = E [(pe +dp) (1+rat)]
=E (pt+ pirdt +dpy),

since the second-order term is zero. Dividing by p; and
cancelling gives
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Pricing Kernel

The pricing kernel p; Is a stochastic discount factor of the form

d—pt:adterdzt,
i

the span of the returns on the risk-free asset and the stock.
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By (2), for the pricing kernel to price the risk-free asset
requiresa= —r.
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By (1), for the pricing kernel to price the stock requires

S B S
=E{(-rdt+bdz)+[(r+u)d+odz]

+(—rdt+bdz)[(r+u) dt+odz]}
=E|-rdt+(r+p)d+boat,

sob=—-u/o.
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Thus the pricing kernel follows the stochastic differential
equation

d—pt:—rdt—“dzt.

0y o

For the initial condition pg = 1, the solution is

=[5 (4 ba
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Arbitrage

Following Black and Scholes, assume that the call pricec; Isa
function of the stock price. Then itsreturn liesin the span of
the returns of the stock price and the risk-free asset.

The absence of arbitrage then requires that the return on the
call can be priced by the pricing kernel for the stock and the
risk-free asset.
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Black-Scholes Partial Differential Equation

If ¢t =c(s, 1) (T isthe time to expiration), by the second-order
Taylor series expansion

1
do = —c; dt 4 csds chs(dst)2

= —Cdt +cs& [(r+ ) dt + odz]

+ = cssqz (r + ) dt +odz)?.

For the pricing kernel to price the call,

O:Et<dpt | ac | ap: dCt).
Pt Ct Pt Gt
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Hence

O:Et{(—rdt “dzt) dc? :( ot — gdzt> dcﬂ

1 1
Ct 2 o

which yields the Black-Scholes partial differential equation

1
O=—IC —Cr +CsS T+ éCSS§02.

(Here c; Isthe call price a timet, but c; isthe partial derivative
of the price with respect to 1.)
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Present Discounted Value

Equivalently, the call priceisthe present value of its exercise
value at expiration, using the pricing kernel as the stochastic
discount factor.

Theorem 1
¢(s0,t) = Eo[prc(s,0)]. (3)

Here
C(S,0) = max|s —x, 0],

the value at expiration with striking price x.
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Computation of the Expected Value
Since

1
st:soeprrJru—éaZ)tJrazt},

therefores > x for

2> /) (r+u-302 ) =2 (@

o)
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From our previous work,

a-sool 3o (o 2]
DX = xe "texp _—% (%)Zt — gzt} . (6)

We cal culate the expected value of these expressions over the
range (4).
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The probability density function of z Is

1 1
exp| —=z/t].
== exp ( >4/ )
When one integrates to find the expectations, the quadratic in z
combines with the terms linear in z in the exponentials (5)-(6)
to form a quadratic. This quadratic Isagan a normal

probability density function, still with variancet, but the mean
IS noNn-zero.
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Eo(pts) over z > z

= [{wen|-5(c-5) t+ (o-5)4
\/;im exp (—%f/t) dz}
:30/; \/;imexp{—% [z— (a—g)tr/t}dz
s {[ (o4 1]

In which F 1sthe cumulative distribution function for a normal

with mean zero and variance one.
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Substituting for z gives
Eo(pts) overz >z
-F {(o-5)
+ |:|n(S()/X)—|— <r+u — %02> t} /a\/f}

= SoF { {ln(SO/X)—I— <r+ %az> t} /a\/f}.

Here u has cancelled out!
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Eo (ptX) over z >z

[l i
e <——22 /tf dz}

I\JlH

V2t

Tit
= Xe / _ex - z+—t /t dz
rt “
= X€ FK 5

\/f
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Substituting for z gives

Eo (ptX) overz >z

(

= xe "F « —%\/H {In(so/x)Jr (r+u— 1_02> t} /J\/f}

\\
(

= xe "'F « {In(so/x)Jr <r — %02> t} /m/f}.

\

Again u has cancelled out!
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Black-Scholes Formula

The price of the call option isthe difference in the two present
discounted values.

Theorem 2 (Black-Scholes) The price of the call option is

Eo (pt max |s — X, 0])
s { [+ (14 207) ] rovt]

—xe "F { |:|n(So/X)—|— <r — %02> t} /a\/f}.
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