Financial Economics Optimum Saving with Constant Relative Risk Aversion

Budget Constraint

Suppose that all consumption is financed out of wealth; there is no labor income or other income. The budget constraint is

$$w_{t+dt} = (w_t - c_t dt) (1 + da_t)$$
$$= w_t (1 + da_t) - c_t dt.$$

Equivalently,

$$dw_t = w_{t+dt} - w_t = w_t da_t - c_t dt.$$
 (1)

1

Financial Economics Optimum Saving with Constant Relative Risk Aversion

Constant Relative Risk Aversion

The consumer maximizes expected utility

$$\mathrm{E}_t \left[\int_t^\infty v(c_\tau) \, \mathrm{e}^{-\rho(\tau-t)} \, \mathrm{d}\tau \right] = \mathrm{E}_t \left[\int_t^\infty \frac{c^{1-\alpha}}{1-\alpha} \mathrm{e}^{-\rho(\tau-t)} \, \mathrm{d}\tau \right].$$

There is constant relative risk aversion, $\alpha > 0$, $\alpha \neq 1$.

3

Financial Economics Optimum Saving with Constant Relative Risk Aversion

Budget Constraint

Substitute the feedback rule (3) into the budget constraint (1):

$$d(c_t/k) = (c_t/k) da_t - c_t dt,$$

so

$$\frac{\mathrm{d}c_t}{c_t} = \mathrm{d}a_t - k\,\mathrm{d}t. \tag{4}$$

Financial Economics Optimum Saving with Constant Relative Risk Aversion

Asset Return

Assume that the probability distribution of the return da_t is independent of time,

$$da_t = m dt + s dz_t. (2)$$

There is no portfolio choice; the consumer invests wealth with this return.

2

Financial Economics Optimum Saving with Constant Relative Risk Aversion

Consumption Decision

By the proportionality property of constant relative risk aversion, it is intuitive that the optimum consumption decision is to consume a fixed fraction of wealth,

$$c_t = k w_t. (3)$$

Here k is constant, and we determine the optimum value. High k means low saving.

4

Financial Economics Optimum Saving with Constant Relative Risk Aversion

From our earlier work, a necessary condition for optimum consumption is

$$0 = E_t (da_t - \rho dt) + E_t \left[-\alpha \left(\frac{dc_t}{c_t} \right) (1 + da_t) \right]$$

$$+ E_t \left[\frac{1}{2} \alpha (\alpha + 1) \left(\frac{dc_t}{c_t} \right)^2 \right].$$

5

6

Financial Economics Optimum Saving with Constant Relative Risk Aversion

Substituting (4) gives

$$0 = E_{t} (da_{t} - \rho dt) + E_{t} [-\alpha (da_{t} - k dt) (1 + da_{t})]$$

$$+ E_{t} \left[\frac{1}{2}\alpha (\alpha + 1) (da_{t} - k dt)^{2}\right] \text{ by (4)}$$

$$= E_{t} (da_{t}) - \rho dt + E_{t} [-\alpha da_{t} (1 + da_{t})] + \alpha k dt$$

$$+ \frac{1}{2}\alpha (\alpha + 1) (da_{t})^{2}$$

$$= (1 - \alpha) m dt + (\alpha k - \rho) dt + \left[-\alpha + \frac{1}{2}\alpha (\alpha + 1)\right] s^{2} dt \text{ by (2)}.$$

7

Financial Economics Optimum Saving with Constant Relative Risk Aversion

Certainty

For s = 0, we have the result with certainty,

$$k = \frac{1}{\alpha} \left[\rho + (\alpha - 1) m \right]$$
$$\frac{\mathrm{d}c_t}{c_t} = \frac{1}{\alpha} \left(m - \rho \right) \mathrm{d}t.$$

9

Financial Economics Optimum Saving with Constant Relative Risk Aversion

Logarithmic Utility

These formulas also apply for logarithmic utility, $\alpha = 1$,

$$v(c_t) = \ln c_t$$
.

The substitution and wealth effects cancel, and

$$k = \rho$$

$$c_t = \rho w_t$$

$$\frac{dc_t}{c_t} = (m - \rho) dt + s dz_t.$$

11

Financial Economics Optimum Saving with Constant Relative Risk Aversion

Cancelling gives dt and solving for k gives

$$k = \frac{1}{\alpha} \left[\rho + (\alpha - 1)m - \frac{1}{2}\alpha (\alpha - 1)s^2 \right]. \tag{5}$$

Then

$$\begin{split} \frac{\mathrm{d}c_t}{c_t} &= \mathrm{d}a_t - k\,\mathrm{d}t \\ &= (m\,\mathrm{d}t + s\,\mathrm{d}z_t) - \left\{\frac{1}{\alpha}\left[\rho + (\alpha - 1)m - \frac{1}{2}\alpha\left(\alpha - 1\right)s^2\right]\right\}\mathrm{d}t \\ &= \frac{1}{\alpha}\left[(m - \rho) + \frac{1}{2}\alpha\left(\alpha - 1\right)s^2\right]\mathrm{d}t + s\,\mathrm{d}z_t. \end{split}$$

8

Financial Economics Optimum Saving with Constant Relative Risk Aversion

Substitution and Wealth Effects

Above the expression

$$\alpha - 1$$

reflects the opposition of substitution and wealth effects. A small value α means high intertemporal substitution. Thus $\alpha-1<0$ means that the substitution effect dominates.

For example, in (5), if the substitution effect dominates, then higher mean return m raises saving and greater uncertainty s reduces saving (but increases the mean growth rate of consumption).

10