
Financial Economics Itô’s Formula

Calculus Rules

In standard, non-stochastic calculus, one computes a derivative

or an integral using various rules. In the Itô stochastic calculus,

one extends these rules to the stochastic terms.

Suppose that u is some function u(x) of x. We want to express

the differential du in terms of the differential dx.
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Taylor Series

Consider the Taylor series expansion of u(x) about some

value x:

u(x)= u(x)+u′(x)(x−x)+
1
2

u′′(x)(x−x)2+
1
3!

u′′′(x)(x−x)3+ ⋅ ⋅

Under certain general conditions, u(x) equals this infinite sum

exactly.
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Rewrite this expression in terms of the changes ∆x := x− x and

∆u := u(x)−u(x):

∆u = u′(x)∆x+
1
2

u′′(x)(∆x)2 +
1
3!

u′′′(x)(∆x)3 + ⋅ ⋅ ⋅ .

Replace the difference by the differential:

du = u′(x)dx+
1
2

u′′(x)(dx)2 +
1
3!

u′′′(x)(dx)3 + ⋅ ⋅ ⋅ . (1)
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Non-Stochastic Calculus

In standard, non-stochastic calculus, one computes a

differential simply by keeping the first-order terms. For small

changes in the variable, second-order and higher terms are

negligible compared to the first-order terms. Equation (1)

becomes

du = u′ dx.

The change in u is proportional to the change in x.
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Stochastic Calculus—Itô’s Formula

In stochastic calculus, one must also keep the second-order

terms. Equation (1) becomes Itô’s formula,

du = u′ dx+
1
2

u′′(dx)2 (2)

This equation is exact; the third-order and higher order terms

are zero.
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Rules of Stochastic Calculus

One computes Itô’s formula (2) using the rules (3). Let z

denote Wiener-Brownian motion, and let t denote time. One

computes using the rules

(dz)2 = dt,

dzdt = 0,

(dt)2 = 0.

(3)

The key rule is the first and is what sets stochastic calculus

apart from non-stochastic calculus.
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Computation

Although we prove the rules (3) below, first let us consider the

implication of the rules. One computes mechanically, as in

ordinary algebra, but using the rules. The second-order terms

cannot be dropped, since (dz)2 = dt.
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Example

If dx = mdt + sdz, then

(dx)2 = (mdt + sdz)2

= (mdt)2 +(sdz)2 +2(mdt)(sdz)

= 0+ s2 dt +0

= s2 dt.

The second-order term is non-zero, as long as the instantaneous

stochastic part is non-zero (s ∕= 0).
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Therefore Itô’s formula (2) says

du = u′ (mdt + sdz)+
1
2

u′′(mdt + sdz)2

= u′ (mdt + sdz)+
1
2

u′′s2 dt

=

(
u′m+

1
2

u′′s2
)

dt +u′sdz.
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Third-Order and Higher-Order Terms

Like non-stochastic calculus, third-order and higher-order

terms are zero. For example,

(dx)3 = dx (dx)2 = (mdt + sdz)s2dt = ms2 (dt)2 + sdzdt = 0,

applying the rules.
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Square of Wiener-Brownian Motion

Consider u = z2:

du = u′ dz+
1
2

u′′ (dz)2

= 2zdz+
1
2

2(dz)2

= 2zdz+dt.

Relative to non-stochastic calculus, dt is an extra term.
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Confirmation of Previous Result

Essentially the same calculation confirms our earlier limiting

result that du = 2zdz, with initial value u(0) = 0, has the

solution u = z2 − t:

du = uz dz+ut dt +
1
2

uzz (dz)2 +uzt dzdt +
1
2

utt (dt)2

= 2zdz+(−1)dt +
1
2

2(dz)2 +0dzdt +
1
2

0(dt)2

= 2zdz−dt +dt

= 2zdz.
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Stochastic Exponential

If u = ez−t/2, then

uz = u uzz = u

ut =− 1
2 u uzt =− 1

2 u utt =
1
4 u.
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The Taylor series is

du = uz dz+ut dt +
1
2

uzz (dz)2 +uzt dzdt +
1
2

utt (dt)2

= udz− 1
2

udt +
1
2

u(dz)2 − 1
2

udzdt +
1
2

(
1
4

u

)
(dt)2

= udz− 1
2

udt +
1
2

udt

= udz.
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Logarithm

dlnx =
dlnx

dx
dx+

1
2

d2 lnx
dx2 (dx)2

=

(
1
x

)
dx+

1
2

(
− 1

x2

)
(dx)2

=
dx
x
− 1

2

(
dx
x

)2

.

Hence the change dlnx in the logarithm is not the growth

rate dx/x, unless the instantaneous stochastic part of dx is zero.
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Inverse

We have

(1−dx)−1 = 1+dx+(dx)2 ,

as

(1−dx)
[
1+dx+(dx)2

]
= 1.
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Product Rule

d(xy) =
∂ (xy)

∂x
dx+

∂ (xy)
∂y

dy

+
1
2

∂ 2 (xy)
∂x2 (dx)2 +

∂ 2 (xy)
∂x∂y

dxdy+
1
2

∂ 2 (xy)
∂y2 (dy)2

= ydx+ xdy+0(dx)2 +1dxdy+0(dy)2

= ydx+ xdy+ dxdy.

Compared to non-stochastic calculus, dxdy is an extra term.
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Error Rule

We prove the fundamental error rule (dz)2 = dt, by taking the
limit of the discrete-time analogue. Divide the time interval
from zero to t into n periods of length ∆t, so t = n∆t. Holding t

fixed, define
∫ t

0
(dz)2 := lim

∆t→0

n

∑
i=1

[
∆z(i−1)∆t

]2
.

Defining ei := ∆z(i−1)∆t = zi∆t − z(i−1)∆t , we can restate this
equation as

∫ t

0
(dz)2 := lim

n→∞

(
e2

1 + ⋅ ⋅ ⋅+ e2
n

)
.
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We rewrite the sum of the squared errors as

e2
1 + e2

2 + ⋅ ⋅ ⋅+ e2
n = t

{
1
n

[(
e2

1

∆t

)
+

(
e2

2

∆t

)
+ ⋅ ⋅ ⋅+

(
e2

n

∆t

)]}
.

Holding t = n∆t fixed, take the limit as ∆t → 0, n → ∞.

The expression in braces is the sample mean of n independent

χ2 (1) variables. By the law of large numbers, the sample mean

converges to the true mean 1 as the sample size increases.

Hence

lim
n→∞

(
e2

1 + e2
2 + ⋅ ⋅ ⋅+ e2

n

)
= t.
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Therefore ∫ t

0
(dz)2 = t,

regardless of t. Of course
∫ t

0
dt = t.

Comparing the two integrals proves

(dz)2 = dt.
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Time Rule

We next prove (dt)2 = 0. Divide the time interval from zero
to t into n periods of length ∆t, so t = n∆t. By definition,

∫ t

0
(dt)2 := lim

∆t→0

n

∑(∆t)2

= lim
∆t→0

[
n(∆t)2

]

= lim
∆t→0

(n∆t) lim
∆t→0

∆t

= t0

= 0,

and the result follows.
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Cross-Product Rule

The rule dzdt = 0 can be shown by a similar limiting argument.

22


