
Financial Economics First-Order Condition

Return

Working in a small-risk context, we derive a first-order

condition for optimum portfolio choice.

Let da denote the return on the optimum portfolio—the return

that maximizes expected utility. A one-dollar investment at

time t is worth 1+da dollars at time t +dt.

Let dai denote the return on asset i.
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Portfolio Variation

Consider an investment of the fraction f of wealth in asset i,

and the fraction 1− f in the optimum portfolio. The return on

this portfolio is

da f := f dai +(1− f ) da.

If the investment at time t is wt , then wealth at time t +dt is

wt+dt = wt [1+( f dai +(1− f ) da)] .
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Utility

Utility at time t is u(wt+dt).

By definition, the expected utility

Et [u(wt+dt)]

is maximized when f = 0.
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First-Order Condition

Theorem 1 (First-Order Condition) (Arrow [1]) For asset i,

the first-order condition for utility-maximizing portfolio choice

is

0 = Et

[

u′ (wt+dt)(dai −da)
]

. (1)

The product of the marginal utility and the difference in return

has expected value zero.
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Proof

For asset i, the first-order condition for utility maximization is

0 =
d

d f
(Et [u(wt+dt)]) ,

at f = 0.
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We evaluate

d

d f
{Et [u(wt+dt)]}

= Et

[

u′ (wt+dt)
d

d f
(wt+dt)

]

= Et

[

u′ (wt+dt)
d

d f
(wt {1+[ f dai +(1− f ) da]})

]

= Et

[

wtu
′ (wt+dt)(dai −da)

]

,

and theorem 1 follows. The sign of the expected value

determines whether higher investment in asset i increases or

decreases expected utility.
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State-Dependent Utility

The result is very general. In particular, it does not require that

utility depend solely on end-of-period wealth; utility might be

state-dependent. One might write u(wt+dt ,st+dt) to make this

dependence explicit.
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No State Dependence

If utility depends only on wealth and is not state dependent,

then the expression in the first-order condition is

u′ (wt+dt)(dai −da)

=

[

u′ (wt)+u
′′
(wt) dwt +

1

2
u′′′ (wt)(dwt)

2

]

(dai −da)
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=

[

u′ (wt)+u
′′
(wt) dwt +

1

2
u′′′ (wt)(dwt)

2

]

(dai −da)

=
[

u′ (wt)+u
′′
(wt) dwt

]

(dai −da)

=
[

u′ (wt)+u
′′
(wt) wt da

]

(dai −da)

= u′ (wt)

[

1+
u
′′
(wt) wt

u′ (wt)
da

]

(dai −da)

= u′ (wt)(1−α da)(dai −da) .

Here α is the relative risk aversion.
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Setting the expected value to zero yields the following

corollary to theorem 1.

Corollary 2 (No State Dependence) If utility is not state

dependent, then for asset i the first-order condition for

utility-maximizing portfolio choice is

0 = Et [(1−α da)(dai −da)] (2)

= [Et (dai)−Et (da)]−α da(dai −da) .

The sign of the expected value in (2) determines whether higher

investment in asset i increases or decreases expected utility.

10

Financial Economics First-Order Condition

Mean/Variance

In the small-risk context, we know that expected utility

maximization reduces to maximizing a linear function of mean

and variance. Therefore let us also derive corollary 2 in this

mean/variance framework.

11

Financial Economics First-Order Condition

Expected Utility

Et [u(wt+dt)]

= Et

(

da f

)

−
1

2
αVart

(

da f

)

= Et [ f dai +(1− f ) da]

−
1

2
αVart [ f dai +(1− f ) da]

= f Et (dai)+(1− f )Et (da)

−
1

2
α

[

f 2 (dai)
2 +(1− f )2 (da)2 +2 f (1− f ) dai da

]

.
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First-Order Condition

The first-order condition for a maximum is

0 =
d

d f
(Et [u(wt+dt)])

= Et (dai)−Et (da)

−
1

2
α

[

2 f (dai)
2 −2(1− f )(da)2 +2(1−2 f ) dai da

]

= Et (dai)−Et (da)−α da(dai −da) , at f = 0,

which yields corollary 2.

13

Financial Economics First-Order Condition

Portfolio Choice

We use the first-order condition (2) to derive optimum portfolio

choice. Let

r dt

denote the return on a risk-free asset. Let

dx = mdt +dz

denote a vector of excess returns on risky assets. Here z is

Wiener-Brownian motion, with non-singular variance

Var(dz) = V dt.
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Define the vector f as the fraction of wealth invested in the

risky assets, and 1−1⊤f is the fraction of wealth invested in

the risk-free asset.

We find the first-order condition for the optimum portfolio

choice f .

The vector of asset returns is

r1dt +dx.

The return on the portfolio is

da = r dt + f⊤dx.
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First-Order Condition

Written as a vector, the first-order condition (2) is

0 = Et

{(

dx−1f⊤dx
)[

1−α

(

r dt + f⊤dx
)]}

=
(

I−1f⊤
)[

Et (dx)−α dx
(

dx⊤
)

f
]

dt

=
(

I−1f⊤
)

(m−αV f )dt.

Evidently

f =
1

α

V
−1m

is a solution, in agreement with the result via the separation

theorem.
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