Risk Aversion

A risk-indifferent individual chooses the gamble with highest expected value.

A risk-averse individual will surrender expected value for reduced risk.

Risk-Averse Behavior

- Insurance;
- Portfolio diversification;
- Bernoulli game.

Insurance

Buying insurance

- Reduces risk;
- Reduces expected value (the premium exceeds the expected value of the payout).

Proof that Diversification Reduces Risk

Consider a two risky asset example. An investor invests the fraction $1-f$ of his wealth in a low-risk asset, for which the standard deviation of the rate of return is one. He invests the fraction f in a higher risk asset, for which the standard deviation of the rate of return is $s>1$. The correlation between the two rates of return is r.

Evidence for Risk Aversion
The variance of the rate of return on the portfolio is

$$
\operatorname{Var}\left(R_{f}\right)=(1-f)^{2} 1+f^{2} s^{2}+2(1-f) f r s .
$$

Differentiating and setting $f=0$ gives

$$
\begin{aligned}
\frac{\mathrm{d}\left[\operatorname{Var}\left(R_{f}\right)\right]}{\mathrm{d} f} & =(-2+2 f)+2 f s^{2}+2(1-2 f) r s \\
& =2(r s-1) \text { at } f=0 .
\end{aligned}
$$

Diversification pays if the derivative at $f=0$ is negative.
Diversification necessarily pays if $r \leq 0$.
If $r>0$, then diversification pays if and only if $r<1 / s$.

Bernoulli Game

Consider a gamble: flip a coin until it comes up tails; then the game ends.

If the first tail is on the nth flip, you win 2^{n} dollars.
How much would you pay to play the game one time?

The expected value of the game is infinite. As the probability of the first tail occurring on the nth flip is $1 / 2^{n}$, the expected value is

$$
\begin{aligned}
\left(\frac{1}{2}\right) 2^{1} & +\left(\frac{1}{2}\right)^{2} 2^{2}+\left(\frac{1}{2}\right)^{3} 2^{3}+\cdots \\
& =1+1+1+\cdots \\
& =\infty
\end{aligned}
$$

If an individual refuses to risk everything he owns to play the game, then he must be risk averse.

