
Financial Economics Euclidean Space

Euclidean Space

Definition 1 (Euclidean Space) A Euclidean space is a

finite-dimensional vector space over the reals R, with an inner

product 〈·, ·〉.
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Inner Product

Definition 2 (Inner Product) An inner product 〈·, ·〉 on a real

vector space X is a symmetric, bilinear, positive-definite

function

〈·, ·〉 : X×X → R

(x∗,x) 7→ 〈x∗,x〉 .

(Positive-definite means 〈x,x〉> 0 unless x = 0.)
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Orthogonal

Definition 3 (Orthogonal) Two vectors x
∗ and x are

orthogonal if their inner product is zero,

〈x∗,x〉= 0.

Geometrically, orthogonal means perpendicular.
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Orthonormal Basis

Definition 4 (Orthonormal Basis) In a Euclidean space, an

orthonormal basis is a basis xi such that

〈

xi,x j

〉

=







1 if i = j

0 if i 6= j.

Any two basis vectors are orthogonal.

A Euclidean space has more than one orthonormal basis.
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If

x = ∑
i

xixi

x
∗ = ∑

i

x∗i xi,

then

〈x∗,x〉= ∑
i

x∗i xi.
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R

For the real numbers R, the inner product is just ordinary

multiplication.

Definition 5 The Euclidean space R of real numbers is defined

by the inner product

〈x∗,x〉 := x∗x.
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Rn

The Euclidean space Rn := R×·· ·×R (n times), in which the

elements are vectors with n real components. By assumption,

the n vectors
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form an orthonormal basis. The inner product of two vectors is

then the sum of the component by component products.
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Isomorphic

In abstract algebra, “isomorphic” means “the same.” If two

objects of a given type (group, ring, vector space, Euclidean

space, algebra, etc.) are isomorphic, then they are “the same,”

when considered as objects of that type. An “isomorphism” is a

one-to-one and onto mapping from one space to the other that

“preserves” all properties defining the space.

Any n-dimensional Euclidean space is isomorphic to Rn.

Although two spaces may be isomorphic as Euclidean spaces,

perhaps the “same” two spaces are not isomorphic when

viewed as another space.
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Coordinate-Free Versus Basis

It is useful to think of a vector in a Euclidean space as

coordinate-free.

Given a basis, any vector can be expressed uniquely as a linear

combination of the basis elements. For example, if x = ∑i xixi

for some basis xi, one can refer to the xi as the coordinates of x

in terms of this basis. Many linear algebra textbooks develop

all the results in terms of a basis.
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In economic theory and econometrics, typically vectors are not

seen as coordinate-free. A particular basis is singled out, and

one works with coordinates. Commonly there is a natural basis,

but unfortunately the natural basis is perhaps not orthonormal.

Despite this tradition, the coordinate-free point-of-view is

superior. Not using coordinates reduces the use of subscripts

and makes expressions simpler, and theorems are easier to state

and to prove.
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Linear Transformation

Definition 6 (Linear Transformation) A linear

transformation from a Euclidean space X to a Euclidean

space Y is a function

A : X → Y

x 7→ y = Ax

such that

A(x1 +x2) = Ax1 +Ax2.

11

Financial Economics Euclidean Space

Adjoint

The following proposition is a standard theorem of linear

algebra.

Proposition 7 (Adjoint) Given a linear transformation

A : X → Y, then there exists a unique linear transformation

(the adjoint)

A
⊤ : Y → X

that preserves the inner product:

〈y,Ax〉=
〈

A
⊤

y,x

〉

(1)

for all x and y.
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The adjoint is very important in applications and has not been

appreciated by economists. The adjoint is independent of any

choice of bases, and in many applications one can determine it

directly, expressed in a coordinate-free way. The adjoint then

becomes a powerful tool, and one can easily obtain valuable

results via the adjoint, almost as if by magic.

Typically one does not calculate the adjoint directly. Instead

one conjectures an expression for the adjoint, and then verifies

that the adjoint condition (1) holds.
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Matrix Representation

A matrix representation for a linear transformation A : X → Y

is a matrix Ai j that shows how basis elements x j ∈ X map to a

linear combination of basis elements yi ∈ Y:

x j 7→ Ax j = ∑
i

Ai jyi.
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Adjoint as Transpose

If the bases for X and Y are each orthonormal, then the matrix

representation of the adjoint is the transpose of the matrix

representation:

A
⊤

yi = ∑
j

Ai jx j.
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To prove this relationship, verify the adjoint condition (1), for

arbitrary basis elements:

〈

A
⊤

yi,x j

〉

=

〈

∑
k

Aikxk,x j

〉

= Ai j (since the basis x j is orthonormal)

=

〈

yi,∑
k

Ak jyk

〉

(since the basis yi is orthonormal)

=
〈

yi,Ax j

〉

,

as desired.
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On the other hand, if the bases are not orthonormal, then the

transpose of the matrix representation is not the matrix

representation of the adjoint.
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Since we want to see vectors as coordinate-free, however, the

matrix representation is of secondary importance. Apart from

simple cases, it may be difficult to write down the matrix

representation explicitly. At the same time, one can describe

the adjoint easily, without reference to any basis.
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Riesz Representation

A fundamental theorem states that any linear function X → R

can be expressed as x 7→ 〈y,x〉 for a unique y.
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For some y ∈ X, the adjoint of the linear function

y : R 7→ X

z 7→ x = zy

is

y
⊤ : X → R

x 7→ z = 〈y,x〉 .
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Verify that the adjoint condition (1) holds:

〈x,yz〉= 〈x,y〉z = 〈y,x〉z = 〈〈y,x〉 ,z〉=
〈

y
⊤

x,z
〉

.

Thus

y
⊤

x = 〈y,x〉 .

Either notation is equivalent, but normally we employ the inner

product notation on the right-hand side.
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Matrix Representation

Suppose

y = ∑
i

yixi,

for a basis xi. Let us use the natural orthonormal basis 1 for R.

The matrix representation of the linear transformation y is

1 → ∑
i

yixi,

so the vector with components yi defines the matrix

representation. For the adjoint y
⊤, however, the matrix

representation is not the transpose of this vector, unless the

basis xi is orthonormal.
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The matrix representation of the adjoint is

x j 7→
〈

y,x j

〉

1 =

〈

∑
i

yixi,x j

〉

1 = ∑
i

〈

xi,x j

〉

yi1.

For a nonorthonormal basis, the matrix representation of the

adjoint is not x j 7→ y j1.
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Fundamental Theorem of Linear Algebra

The fundamental theorem of linear algebra states that the null

space N(A) and the range R
(

A
⊤
)

are orthogonal, and any

x ∈ X can be written uniquely as an element of N(A) plus an

element of R
(

A
⊤
)

.

The same relationship holds for the range R(A) and the null

space N
(

A
⊤
)

.
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Moore-Penrose Generalized Inverse

Using the fundamental theorem of linear algebra, we define the

Moore-Penrose generalized inverse.

Consider a linear transformation

A : X → Y

x 7→ y = Ax.

The generalized inverse A
+ is a linear transformation mapping

Y → X.
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Using the fundamental theorem of linear algebra, one can

prove the following.

Proposition 8 (Inverse) The restriction of A to R
(

A
⊤
)

A : R
(

A
⊤
)

→ R(A)

x 7→ y = Ax.

is one-to-one and onto, so it has an inverse.
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Define the generalized inverse

A
+ : Y → X

via this inverse mapping. For y ∈ R(A), define A
+

y as the

inverse of A. For y ∈ N
(

A
⊤
)

, define A
+

y = 0. This definition

rests on the coordinate-free approach to linear algebra.

The relationship between A and A
+ is symmetric. A linear

transformation is the generalized inverse of its generalized

inverse: (A+)
+
= A. And AA

+
A = A.

The singular-value decomposition obtains further results. If A

is onto, then AA
⊤ is invertible, and A

+ = A
⊤
(

AA
⊤
)−1

.
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Linear Equation

For the linear equation

Ax = y,

there is a solution x if and only if y ∈ R(A).

If there is a solution, then the unique solution in R
(

A
⊤
)

is A
+

y.

This vector plus any element of N(A) is also a solution. Hence

the complete solution set is

{

A
+

y
}

+N(A) .
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Order

The concept of a Euclidean space does not involve any concept

of order, of one vector being greater than another. However

commonly one defines the additional structure of a partial

ordering via the representation of a vector in a natural basis.
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Definition 9 (Partial Ordering) Given a basis representation

x = ∑
j

x jx j,

then

x � 0 if every x j ≥ 0

x ≻ 0 if every x j ≥ 0 and some xi > 0

x ≫ 0 if every x j > 0.
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Definition of the Inner Product

To embed model structure into the inner product simplifies the

analysis.

In a Euclidean space of random variables, one might define the

inner product of two random variables as the covariance.

Orthogonality then means no correlation.

A different definition of the inner product derives from a partial

ordering: one defines a “trace” inner product consistent with

the ordering.
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