Financial Economics	Black-Scholes Option Pricing	Financial Economics	Black-Scholes Option Pricing		
		Notation			
Black-Scholes Option Pricing		s Stock price			
		c Call price			
		x Exercise price			
Black and Scholes [1] use an arbitrage argument to derive a		<i>r</i> Risk-free rate of return			
formula for option pricing.		μ Stock return risk premium			
		σ Stock return standard deviation			
		au Time to e	xpiration		
		t Time			
1		2			
Financial Economics	Black-Scholes Option Pricing	Financial Economics	Black-Scholes Option Pricing		
Random Walk		Call Price			
The risk-free asset has the constant return		Given the model and its parameters, it seems natural that the			
$r \mathrm{d} t$.		call price is some function of the stock price and the time to			
		expiration, $c(s, \tau)$.			
The stock price follows a random walk, with constant mean and variance: $\frac{ds}{s} = (r + \mu) dt + \sigma dz.$ The stock pays no dividend, so this expression is the return on		Of course, at the expiration date, the call value is known:			
		-			
		c(s,0) =	$= \max\left[s - x, 0\right]. \tag{1}$		
the stock.	,	We solve for $c(s, \tau)$.			
3		4			
Financial Economics	Black-Scholes Option Pricing	Financial Economics	Black-Scholes Option Pricing		
		Risk-Free Portfolio			
Hedge Ratio		If the stock price determines the call price, then one can form a risk-free portfolio from the stock and the call.			
Definition 1 (Hedge Ratio) The hedge ratio is $h := \frac{\partial c}{\partial s}.$ (In finance, "to hedge" means to take action to reduce or to eliminate risk.)		For example, suppose that the hedge ratio $h = 1/2$. This value means that a one dollar increase in the stock price raises the call price by one-half dollar. Then buying one share of stock and selling two calls achieves a			
				risk-free portfolio: any increase in the stock price is offset by an equal decline in the value of the two calls.	
				6	

Financial Economics

Black-Scholes Option Pricing

By Itô's formula,

$$\mathrm{d}c = c_s \,\mathrm{d}s + \frac{1}{2}c_{ss} \,(\mathrm{d}s)^2 - c_\tau \,\mathrm{d}t$$

(as time passes, the time to expiration shrinks, so $d\tau/dt = -1$).

Financial Economics

Black-Scholes Option Pricing

Arbitrage

7

Since the portfolio is risk-free, to rule out an arbitrage opportunity its return must be the risk-free return. The cost of the portfolio is

so

$$\left(s-\frac{c}{c_s}\right)r\,\mathrm{d}t = -\frac{1}{c_s}\left(\frac{1}{2}c_{ss}s^2\sigma^2 - c_\tau\right)\mathrm{d}t.$$

 $s-\frac{1}{h}c$,

9

Financial Economics

Black-Scholes Option Pricing

Black-Scholes Formula

Solution 3

$$c(s,\tau) = sN\left[\frac{\ln(s/x) + (r+\sigma^2/2)\tau}{\sigma\sqrt{\tau}}\right]$$
$$-xe^{-r\tau}N\left[\frac{\ln(s/x) + (r-\sigma^2/2)\tau}{\sigma\sqrt{\tau}}\right]$$

Here N(v) is the cumulative unit normal, the probability that the value is less than or equal to *v*.

Financial Economics

Black-Scholes Option Pricing

The change in the value of the portfolio is

$$ds - \frac{1}{h}dc = ds - \frac{1}{c_s}dc$$

= $ds - \frac{1}{c_s}\left[c_s ds + \frac{1}{2}c_{ss} (ds)^2 - c_\tau dt\right]$
= $s\left[(r + \mu) dt + \sigma dz\right] - \frac{1}{c_s} (c_s \{s\left[(r + \mu) dt + \sigma dz\right]\}$
+ $\frac{1}{2}c_{ss} \{s\left[(r + \mu) dt + \sigma dz\right]\}^2 - c_\tau dt\right)$
= $-\frac{1}{c_s} \left(\frac{1}{2}c_{ss}s^2\sigma^2 - c_\tau\right) dt$,

which is risk-free.

Financial Economics

Black-Scholes Option Pricing

Black-Scholes Partial Differential Equation

8

Rearranging gives the following.

Definition 2 (Black-Scholes Partial Differential Equation)

$$c_{\tau}+rc-rsc_s-\frac{1}{2}c_{ss}s^2\sigma^2=0.$$

As it is not profitable to exercise the option prior to the expiration date, the boundary condition (1) applies, and using it one solves this partial differential equation. The equation is a transformation of the heat equation in physics and has a unique solution.

10

Financial Economics

Black-Scholes Option Pricing

Hedge Ratio

The hedge ratio is not constant but instead changes as time passes, following a stochastic process. To maintain a risk-free portfolio of the stock and the call thus requires a continuous realignment of the portfolio.

Black-Scholes Option Pricing

Comparative Statics

An arbitrage argument shows that the call price rises as the time to expiration increases and that the call price rises as the exercise price falls. Hence Black-Scholes formula must satisfy this condition, and one can indeed verify this property.

The Stock Price and the Call Price

Using the solution (3), it is possible to show that an increase in the stock price raises the call price.

13 14 **Financial Economics** Financial Economics **Black-Scholes Option Pricing Black-Scholes Option Pricing** This property is taken for granted in options markets. However Variance and the Call Price it is not a consequence just of arbitrage, if the stochastic One can verify that increasing the variance raises the call price. process for the stock price is unrestricted. For an out-of-the-money option, this result is intuitive. Higher For example, consider an out-of-the-money call such that a variance increases the chance that profitable exercise will higher current stock price is paired with an expectation that the happen. future stock price will be less. Then a higher stock price now might lower the call value. For an in-the-money option, the result remains valid. Higher variance increases the chance that the option will expire The Black-Scholes model precludes this possibility by unexercised. But in the other direction, higher variance also assuming that the stock price follows a random walk. Then a increases the chance of a large profit. It turns out that the higher current stock price implies a higher expected future second effect dominates, so the call price rises. stock price. 15 16 Financial Economics Black-Scholes Option Pricing Financial Economics **Black-Scholes Option Pricing Simple Calculation of the Black-Scholes Formula Risk Premium** That the risk premium has no effect on the call price allows a Perhaps surprisingly, the risk premium on the stock has no simple calculation of the Black-Scholes formula: set the risk effect on the call price: this parameter does not appear in the premium to zero. Apply the basic model of asset-market Black-Scholes partial differential equation. equilibrium, in which each asset has the same expected rate of return (the market interest rate-the risk-free rate of return). A higher mean return does imply a greater chance of profitable arbitrage, so the expected profit from arbitrage rises. This rate-of-return condition is equivalent to the present-value condition. Consequently the call price must be the expected However a high mean return also implies that these profits value of the option at expiration, discounted at the risk-free rate

of return.

However a high mean return also implies that these profits should be discounted at a higher rate. The Black-Scholes partial differential equation implies that this discount effect must offset *exactly* the higher expected profit.

The Black-Scholes partial differential equation implies that this same formula applies even if the risk premium is not zero.

Financial Economics	Black-Scholes Option Pricing	Financial Economics	Black-Scholes Option Pricing
		Implied Standard Deviation	
		A test of the Black-Scholes formula is via the <i>implied standard deviation</i> .	
Risk-Free Rat An increase in the risk-free rate of		Consider a real option selling at a particular price. Using the Black-Scholes formula, calculate what standard deviation is needed to yield this price.	
		sample standard deviation of	nplied standard deviation to the f the stock-price changes. In fact and thus the Black-Scholes model
19			20
Financial Economics	Black-Scholes Option Pricing		
References			
 [1] Fischer Black and Myron Scholes. The pricing of options and corporate liabilities. <i>Journal of Political Economy</i>, 81(3):637–654, May/June 1973. HB1J7. 			
21			