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Black-Scholes Option Pricing

Black and Scholes [1] use an arbitrage argument to derive a

formula for option pricing.
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Notation

s Stock price

c Call price

x Exercise price

r Risk-free rate of return

µ Stock return risk premium

σ Stock return standard deviation

τ Time to expiration

t Time
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Random Walk

The risk-free asset has the constant return

r dt.

The stock price follows a random walk, with constant mean

and variance:
ds
s

= (r + µ) dt +σ dz.

The stock pays no dividend, so this expression is the return on

the stock.
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Call Price

Given the model and its parameters, it seems natural that the

call price is some function of the stock price and the time to

expiration,

c(s,τ) .

Of course, at the expiration date, the call value is known:

c(s,0) = max [s− x,0] . (1)

We solve for c(s,τ).
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Hedge Ratio

Definition 1 (Hedge Ratio) The hedge ratio is

h :=
∂c
∂ s

.

(In finance, “to hedge” means to take action to reduce or to

eliminate risk.)
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Risk-Free Portfolio

If the stock price determines the call price, then one can form a

risk-free portfolio from the stock and the call.

For example, suppose that the hedge ratio h = 1/2. This value

means that a one dollar increase in the stock price raises the

call price by one-half dollar.

Then buying one share of stock and selling two calls achieves a

risk-free portfolio: any increase in the stock price is offset by

an equal decline in the value of the two calls.
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By Itô’s formula,

dc = cs ds+
1
2

css (ds)2 − cτ dt

(as time passes, the time to expiration shrinks, so dτ/dt = −1).
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The change in the value of the portfolio is

ds− 1
h

dc = ds− 1
cs

dc

= ds− 1
cs

[
cs ds+

1
2

css (ds)2 − cτ dt

]

= s [(r + µ) dt +σ dz]− 1
cs

(cs {s [(r + µ)dt +σ dz]}

+
1
2

css {s [(r + µ) dt +σ dz]}2 − cτ dt

)

= − 1
cs

(
1
2

csss
2σ2 − cτ

)
dt,

which is risk-free.
8

Financial Economics Black-Scholes Option Pricing

Arbitrage

Since the portfolio is risk-free, to rule out an arbitrage

opportunity its return must be the risk-free return. The cost of

the portfolio is

s− 1
h

c,

so (
s− c

cs

)
r dt = − 1

cs

(
1
2

csss
2σ2 − cτ

)
dt.
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Black-Scholes Partial Differential Equation

Rearranging gives the following.

Definition 2 (Black-Scholes Partial Differential Equation)

cτ + rc− rscs − 1
2

csss
2σ2 = 0.

As it is not profitable to exercise the option prior to the

expiration date, the boundary condition (1) applies, and using it

one solves this partial differential equation. The equation is a

transformation of the heat equation in physics and has a unique

solution.
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Black-Scholes Formula

Solution 3

c(s,τ) = sN

[
ln(s/x)+

(
r +σ2/2

)
τ

σ
√

τ

]

− xe−rτ N

[
ln(s/x)+

(
r−σ2/2

)
τ

σ
√

τ

]
.

Here N(v) is the cumulative unit normal, the probability that

the value is less than or equal to v.
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Hedge Ratio

The hedge ratio is not constant but instead changes as time

passes, following a stochastic process. To maintain a risk-free

portfolio of the stock and the call thus requires a continuous

realignment of the portfolio.
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Comparative Statics

An arbitrage argument shows that the call price rises as the

time to expiration increases and that the call price rises as the

exercise price falls. Hence Black-Scholes formula must satisfy

this condition, and one can indeed verify this property.
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The Stock Price and the Call Price

Using the solution (3), it is possible to show that an increase in

the stock price raises the call price.
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This property is taken for granted in options markets. However

it is not a consequence just of arbitrage, if the stochastic

process for the stock price is unrestricted.

For example, consider an out-of-the-money call such that a

higher current stock price is paired with an expectation that the

future stock price will be less. Then a higher stock price now

might lower the call value.

The Black-Scholes model precludes this possibility by

assuming that the stock price follows a random walk. Then a

higher current stock price implies a higher expected future

stock price.
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Variance and the Call Price

One can verify that increasing the variance raises the call price.

For an out-of-the-money option, this result is intuitive. Higher

variance increases the chance that profitable exercise will

happen.

For an in-the-money option, the result remains valid. Higher

variance increases the chance that the option will expire

unexercised. But in the other direction, higher variance also

increases the chance of a large profit. It turns out that the

second effect dominates, so the call price rises.
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Risk Premium

Perhaps surprisingly, the risk premium on the stock has no

effect on the call price: this parameter does not appear in the

Black-Scholes partial differential equation.

A higher mean return does imply a greater chance of profitable

arbitrage, so the expected profit from arbitrage rises.

However a high mean return also implies that these profits

should be discounted at a higher rate. The Black-Scholes

partial differential equation implies that this discount effect

must offset exactly the higher expected profit.
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Simple Calculation of the Black-Scholes Formula

That the risk premium has no effect on the call price allows a
simple calculation of the Black-Scholes formula: set the risk
premium to zero. Apply the basic model of asset-market
equilibrium, in which each asset has the same expected rate of
return (the market interest rate—the risk-free rate of return).
This rate-of-return condition is equivalent to the present-value
condition. Consequently the call price must be the expected
value of the option at expiration, discounted at the risk-free rate
of return.

The Black-Scholes partial differential equation implies that this
same formula applies even if the risk premium is not zero.
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Risk-Free Rate of Return

An increase in the risk-free rate of return lowers the call price.
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Implied Standard Deviation

A test of the Black-Scholes formula is via the implied standard

deviation.

Consider a real option selling at a particular price. Using the

Black-Scholes formula, calculate what standard deviation is

needed to yield this price.

The test is to compare this implied standard deviation to the

sample standard deviation of the stock-price changes. In fact

the correspondence is good, and thus the Black-Scholes model

fits the data very well.
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