Financial Economics Binomia Approximation

Probability Density Function
for Wiener-Brownian Motion

Let p(x,t) denote the probability density function for x at
timet. For Wiener-Brownian motion,
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as X has mean zero and variancet.
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At time zero, the probability isthe Dirac deltafunction

p(x,0) = 6(X).

All probability is concentrated at zero: by definition
L6(x)dx =1, but §(x) = 0 for x# 0.
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Forward Equation

The forward equation describes how the probability density
function evolves as time passes, starting from an arbitrary
initial probability density p(x,0).
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Heat Equation

For Wiener-Brownian motion, differentiation of the probability
density function shows that it satisfies

1
Pt =5 Poc

2
In physics, this heat equation describes the diffusion of heat: p
isthe distribution of heat in space, and the equation shows how
it diffuses as time passes.
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Binomial Random Walk

We show that Wiener-Brownian motion is the limit of a
binomial random walk, by analyzing the forward equation.
Consider a discrete-time, binomial random walk, for which x
either rises or falls each period. Initially x = 0. Let the period
length be At /2. The random variable x rises or falls by Ax/2,
with equal probability. By looking at even periods only, we can
work with afixed grid of x values...., —Ax, 0, Ax, ... and times
0,At, 2At, .. ..
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Over two periods, X rises by Ax with probability 1/4, stays
constant with probability 1/2, and falls by Ax with
probability 1/4. After two periods,

Var(xag) = % (A%)? + %(0)2+ % (AX)2 = % (A%)2.

After 2n periods (timet = 2n x At/2 = nAt),

Var(x) = %n(Ax)z.
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For Wiener-Brownian motion, this varianceist, so we require
t = nAt = 1n(Ax)% Maintaining the relationship

1 2
Al = = (AX
2( ) ’

we take the limit as At — 0 and n — o, such that t = nAt.
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Forward Equation

Let p(x,t) denote the probability density function for x at
timet. Theinitial condition says p(0,0) = 1/Ax and

p(x,0) = 0 for x # 0O (the discrete analogue of the Dirac delta
function).

The forward equation is a discrete approximation to the heat
equation. The forward equation is

p(x,t+ At)
1

1
2p(x,t)+ Zp(x—Ax,t).

1
= Zp(X+AX7t) +

8
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Hence

p(X,t+At) — p(x,t)

1 1
p(X+AX7t) - ép(x7t) + Zp(X_Axat)

[P(x+Ax%,1) = p(x.1)]

N N

1
- Z [p(X,t) - p(X_AX7t)] :
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Dividing by At = 1 (Ax)? gives

p(x,t+At) — p(x,t)

At
1 p(X+AX7t)_p(th) _ p(X,t)—p(X—AX,t)
_ AX AX
2 AX

Taking the limit yields the heat equation.
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Excellent Approximation

It follows that the binomial can approximate Wiener-Brownian
motion arbitrarily well, and in this sense we have shown that
Wiener-Brownian motion is awell-defined stochastic process.

In fact the approximation is excellent. The following table
shows the excellent quality of the approximation, fort =1,
n=8, At =1/8, Ax= 5. The valuesfor the binomial are
remarkably close to the values for the unit normal in the final
column.
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t=0 t=1/8 t=1/4 t=3/8 t=1/2 t=5/8 t=3/4 t=7/8 t=1 Nomd x

0 0 0 0 0 0 0 0 0.000 0.000 -4.0
0 0 0 0 0 0 0 0.000 0000 0.001 -35
0 0 0 0 0 0 0.000 0.002 0.004 0004 -30
0 0 0 0 0 0.002 0.006 0.011 0017 0018 -25
0 0 0 0 0.008 0.020 0.032 0.044 0056 0054 -20
0 0 0 0.031 0.063 0.088 0.107 0122 0133 0130 -15
0 0 0.125 0.188 0.219 0.234 0.242 0244 0244 0242 -10
0 0.500 0.500 0.469 0.438 0.410 0.387 0367 0349 0352 -05

2.000 1.000 0.750 0.625 0.547 0.492 0.451 0.419 0393 0.399 0.0
0.500 0.500 0.469 0.438 0.410 0.387 0367 0349 0.352 05
0.125 0.188 0.219 0.234 0.242 0244 0.244 0242 10

0 0.031 0.063 0.088 0.107 0122 0133 0130 15

0
0
0
0
0
0
0
0

0

0

0 0 0 0.008 0.020 0.032 0.044 0056 0054 20
0 0 0 0 0.002 0.006 0.011 0017 0018 25
0 0 0 0 0 0.000 0.002 0004 0004 30
0 0 0 0 0 0 0.000 0.000 0.001 35
0 0 0 0 0 0 0 0.000 0000 4.0




