Probability Density Function for Wiener-Brownian Motion

Let $p(x, t)$ denote the probability density function for x at time t. For Wiener-Brownian motion,

$$
p(x, t)=\frac{1}{\sqrt{2 \pi t}} \mathrm{e}^{-x^{2} / 2 t}
$$

as x has mean zero and variance t.

At time zero, the probability is the Dirac delta function

$$
p(x, 0)=\delta(x) .
$$

All probability is concentrated at zero: by definition $\int_{x} \delta(x) \mathrm{d} x=1$, but $\delta(x)=0$ for $x \neq 0$.

Heat Equation

For Wiener-Brownian motion, differentiation of the probability density function shows that it satisfies

$$
p_{t}=\frac{1}{2} p_{x x} .
$$

In physics, this heat equation describes the diffusion of heat: p is the distribution of heat in space, and the equation shows how it diffuses as time passes.

Binomial Random Walk

We show that Wiener-Brownian motion is the limit of a binomial random walk, by analyzing the forward equation. Consider a discrete-time, binomial random walk, for which x either rises or falls each period. Initially $x=0$. Let the period length be $\Delta t / 2$. The random variable x rises or falls by $\Delta x / 2$, with equal probability. By looking at even periods only, we can work with a fixed grid of x values $\ldots,-\Delta x, 0, \Delta x, \ldots$ and times $0, \Delta t, 2 \Delta t, \ldots$.

Over two periods, x rises by Δx with probability $1 / 4$, stays constant with probability $1 / 2$, and falls by Δx with probability $1 / 4$. After two periods,

$$
\operatorname{Var}\left(x_{\Delta t}\right)=\frac{1}{4}(\Delta x)^{2}+\frac{1}{2}(0)^{2}+\frac{1}{4}(\Delta x)^{2}=\frac{1}{2}(\Delta x)^{2} .
$$

After $2 n$ periods (time $t=2 n \times \Delta t / 2=n \Delta t$),

$$
\operatorname{Var}\left(x_{t}\right)=\frac{1}{2} n(\Delta x)^{2} .
$$

For Wiener-Brownian motion, this variance is t, so we require $t=n \Delta t=\frac{1}{2} n(\Delta x)^{2}$. Maintaining the relationship

$$
\Delta t=\frac{1}{2}(\Delta x)^{2}
$$

we take the limit as $\Delta t \rightarrow 0$ and $n \rightarrow \infty$, such that $t=n \Delta t$.

Hence

$$
\begin{aligned}
& p(x, t+\Delta t)-p(x, t) \\
&= \frac{1}{4} p(x+\Delta x, t)-\frac{1}{2} p(x, t)+\frac{1}{4} p(x-\Delta x, t) \\
&= \frac{1}{4}[p(x+\Delta x, t)-p(x, t)] \\
&-\frac{1}{4}[p(x, t)-p(x-\Delta x, t)] .
\end{aligned}
$$

Dividing by $\Delta t=\frac{1}{2}(\Delta x)^{2}$ gives

$$
\begin{aligned}
& \frac{p(x, t+\Delta t)-p(x, t)}{\Delta t} \\
& =\frac{1}{2} \frac{\frac{p(x+\Delta x, t)-p(x, t)}{\Delta x}-\frac{p(x, t)-p(x-\Delta x, t)}{\Delta x}}{\Delta x} .
\end{aligned}
$$

Taking the limit yields the heat equation.

$$
\begin{aligned}
& p(x, t+\Delta t) \\
& \quad=\frac{1}{4} p(x+\Delta x, t)+\frac{1}{2} p(x, t)+\frac{1}{4} p(x-\Delta x, t) .
\end{aligned}
$$

Let $p(x, t)$ denote the probability density function for x at time t. The initial condition says $p(0,0)=1 / \Delta x$ and $p(x, 0)=0$ for $x \neq 0$ (the discrete analogue of the Dirac delta function).

The forward equation is a discrete approximation to the heat equation. The forward equation is

Dividig by $\Delta t=\frac{1}{2}(\Delta x)^{2}$ gives

Financial Economics
Binomial Approximation

Excellent Approximation

It follows that the binomial can approximate Wiener-Brownian motion arbitrarily well, and in this sense we have shown that Wiener-Brownian motion is a well-defined stochastic process. In fact the approximation is excellent. The following table shows the excellent quality of the approximation, for $t=1$, $n=8, \Delta t=1 / 8, \Delta x=.5$. The values for the binomial are remarkably close to the values for the unit normal in the final column.

Financial Economics

10

Financial Economics											
$t=0$	$t=1 / 8$	$t=1 / 4$	$t=3 / 8$	$t=1 / 2$	$t=5 / 8$	$t=3 / 4$	$t=7 / 8$	$t=1$	Normal	x	
0	0	0	0	0	0	0	0	0.000	0.000	-4.0	
0	0	0	0	0	0	0	0.000	0.000	0.001	-3.5	
0	0	0	0	0	0	0.000	0.002	0.004	0.004	-3.0	
0	0	0	0	0	0.002	0.006	0.011	0.017	0.018	-2.5	
0	0	0	0	0.008	0.020	0.032	0.044	0.056	0.054	-2.0	
0	0	0	0.031	0.063	0.088	0.107	0.122	0.133	0.130	-1.5	
0	0	0.125	0.188	0.219	0.234	0.242	0.244	0.244	0.242	-1.0	
0	0.500	0.500	0.469	0.438	0.410	0.387	0.367	0.349	0.352	-0.5	
2.000	1.000	0.750	0.625	0.547	0.492	0.451	0.419	0.393	0.399	0.0	
0	0.500	0.500	0.469	0.438	0.410	0.387	0.367	0.349	0.352	0.5	
0	0	0.125	0.188	0.219	0.234	0.242	0.244	0.244	0.242	1.0	
0	0	0	0.031	0.063	0.088	0.107	0.122	0.133	0.130	1.5	
0	0	0	0	0.008	0.020	0.032	0.044	0.056	0.054	2.0	
0	0	0	0	0	0.002	0.006	0.011	0.017	0.018	2.5	
0	0	0	0	0	0	0.000	0.002	0.004	0.004	3.0	
0	0	0	0	0	0	0	0.000	0.000	0.001	3.5	
0	0	0	0	0	0	0	0	0.000	0.000	4.0	

