Financial Economics

Average Stock Price

Random Walk

According to the random-walk theory, a stock price follows a random walk. The change in the stock price is white noise.

In contrast, the average stock price during a period of time does not follow a random walk. Its change from one period to the next is a first-order moving average, with first-order autocorrelation $\frac{1}{4}$.

In the past, some econometric studies of the average stock price have wrongly claimed to have disproved the random walk theory,

1

Stock Price

Suppose that the stock price z_t is Wiener-Brownian motion. The first-difference

$$\Delta z_t := z_{t+1} - z_t = \int_t^{t+1} \mathrm{d}z_\tau.$$

Its mean is zero.

2

Financial Economics

Average Stock Price

Financial Economics

Average Stock Price

Moving Average

Below we express variables as an integral (moving average) of the stock price changes dz_t . We then calculate a variance or covariance using the relation

$$E(dz_t dz_\tau) = \begin{cases} dt \text{ if } t = \tau \\ 0 \text{ if } t \neq \tau. \end{cases}$$

3

The variance of the first difference

$$\operatorname{Var}(\Delta z_t) = \operatorname{E}\left[\left(\int_t^{t+1} dz_\tau\right)^2\right] = \int_t^{t+1} \operatorname{E}\left[\left(dz_\tau\right)^2\right] = \int_t^{t+1} d\tau = 1.$$

The first-order autocorrelation of Δz_t is zero, and the first-difference is white noise.

4

Financial Economics

Average Stock Price

Average Stock Price

Let y_t denote the average stock price from time t to time t + 1:

$$y_t := \int_t^{t+1} z_\tau d\tau$$

$$= \int_t^{t+1} \left(z_t + \int_t^\tau dz_w \right) d\tau$$

$$= z_t + \int_t^{t+1} \left(\int_w^{t+1} d\tau \right) dz_w$$

$$= z_t + \int_t^{t+1} (t+1-w) dz_w.$$

The average stock price is not a random walk.

Financial Economics

Average Stock Price

Its first difference is

$$\begin{split} \Delta y_t &:= y_{t+1} - y_t \\ &= \left[z_{t+1} + \int_{t+1}^{t+2} (t+2-w) \, \mathrm{d} z_w \right] \\ &- \left[z_t + \int_t^{t+1} (t+1-w) \, \mathrm{d} z_w \right] \\ &= \int_t^{t+1} \, \mathrm{d} z_\tau + \int_{t+1}^{t+2} (t+2-\tau) \, \mathrm{d} z_\tau + \int_t^{t+1} (\tau - t - 1) \, \mathrm{d} z_\tau \\ &= \int_{t+1}^{t+2} (t+2-\tau) \, \mathrm{d} z_\tau + \int_t^{t+1} (\tau - t) \, \mathrm{d} z_\tau. \end{split}$$

6

5

Average Stock Price

Weighted Average

The integration expresses the first difference as a weighted average of the stock price changes dz_{τ} , with all weights positive. The sum of the coefficients is one:

$$\int_{t+1}^{t+2} (t+2-\tau) d\tau + \int_{t}^{t+1} (\tau - t) d\tau$$

$$= \int_{0}^{1} w dw + \int_{0}^{1} w dw$$

$$= \frac{1}{2} + \frac{1}{2}$$

$$= 1.$$

7

Financial Economics

Average Stock Price

The first-order covariance

$$Cov (\Delta y_{t+1}, \Delta y_t)$$

$$= E \left[\left(- \int_{t+1}^{t+2} (t+1-\tau) \, dz_\tau \right) \left(\int_{t+1}^{t+2} (t+2-\tau) \, dz_\tau \right) \right]$$

$$= - \int_{t+1}^{t+2} (t+1-\tau) (t+2-\tau) \, d\tau$$

$$= \int_0^1 w (1-w) \, dw \text{ (substituting } w := \tau - (t+1))$$

$$= \left(\frac{1}{2} w^2 - \frac{1}{3} w^3 \right) \right]_0^1$$

9

Financial Economics

The variance

$$\operatorname{Var}(\Delta y_t) = \operatorname{E}\left[(\Delta y_t)^2\right]$$

$$= \int_{t+1}^{t+2} (t+2-\tau)^2 d\tau + \int_t^{t+1} (t-\tau)^2 d\tau$$

$$= 2 \int_0^1 \tau^2 d\tau$$

$$= \frac{2}{3},$$

The change in the average stock price has a smaller variance than the change in the stock price.

8

Financial Economics

Average Stock Price

Average Stock Price

First-Order Moving Average

The average stock price y_t is not a random walk. Its change is not white noise, but rather is a first-order moving average, with first-order autocorrelation $\frac{1}{4}$.

10