Random Walk

According to the random-walk theory, a stock price follows a random walk. The change in the stock price is white noise.
In contrast, the average stock price during a period of time does not follow a random walk. Its change from one period to the next is a first-order moving average, with first-order autocorrelation $\frac{1}{4}$.

In the past, some econometric studies of the average stock price have wrongly claimed to have disproved the random walk theory,

Moving Average

Below we express variables as an integral (moving average) of the stock price changes $\mathrm{d} z_{t}$. We then calculate a variance or covariance using the relation

$$
\mathrm{E}\left(\mathrm{~d} z_{t} \mathrm{~d} z_{\tau}\right)=\left\{\begin{array}{l}
\mathrm{d} t \text { if } t=\tau \\
0 \text { if } t \neq \tau
\end{array}\right.
$$

Stock Price

Suppose that the stock price z_{t} is Wiener-Brownian motion. The first-difference

$$
\Delta z_{t}:=z_{t+1}-z_{t}=\int_{t}^{t+1} \mathrm{~d} z_{\tau} .
$$

Its mean is zero.

The variance of the first difference
$\operatorname{Var}\left(\Delta z_{t}\right)=\mathrm{E}\left[\left(\int_{t}^{t+1} \mathrm{~d} z_{\tau}\right)^{2}\right]=\int_{t}^{t+1} \mathrm{E}\left[\left(\mathrm{d} z_{\tau}\right)^{2}\right]=\int_{t}^{t+1} \mathrm{~d} \tau=1$.
The first-order autocorrelation of Δz_{t} is zero, and the first-difference is white noise.

Average Stock Price

Let y_{t} denote the average stock price from time t to time $t+1$:

$$
\begin{aligned}
y_{t} & :=\int_{t}^{t+1} z_{\tau} \mathrm{d} \tau \\
& =\int_{t}^{t+1}\left(z_{t}+\int_{t}^{\tau} \mathrm{d} z_{w}\right) \mathrm{d} \tau \\
& =z_{t}+\int_{t}^{t+1}\left(\int_{w}^{t+1} \mathrm{~d} \tau\right) \mathrm{d} z_{w} \\
& =z_{t}+\int_{t}^{t+1}(t+1-w) \mathrm{d} z_{w} .
\end{aligned}
$$

The average stock price is not a random walk.

$$
\begin{aligned}
\Delta y_{t}:= & y_{t+1}-y_{t} \\
= & {\left[z_{t+1}+\int_{t+1}^{t+2}(t+2-w) \mathrm{d} z_{w}\right] } \\
& -\left[z_{t}+\int_{t}^{t+1}(t+1-w) \mathrm{d} z_{w}\right] \\
= & \int_{t}^{t+1} \mathrm{~d} z_{\tau}+\int_{t+1}^{t+2}(t+2-\tau) \mathrm{d} z_{\tau}+\int_{t}^{t+1}(\tau-t-1) \mathrm{d} z_{\tau} \\
= & \int_{t+1}^{t+2}(t+2-\tau) \mathrm{d} z_{\tau}+\int_{t}^{t+1}(\tau-t) \mathrm{d} z_{\tau}
\end{aligned}
$$

Weighted Average

The integration expresses the first difference as a weighted average of the stock price changes $\mathrm{d} z_{\tau}$, with all weights positive. The sum of the coefficients is one:

$$
\begin{aligned}
\int_{t+1}^{t+2} & (t+2-\tau) \mathrm{d} \tau+\int_{t}^{t+1}(\tau-t) \mathrm{d} \tau \\
& =\int_{0}^{1} w \mathrm{~d} w+\int_{0}^{1} w \mathrm{~d} w \\
& =\frac{1}{2}+\frac{1}{2} \\
& =1
\end{aligned}
$$

The variance

$$
\begin{aligned}
\operatorname{Var}\left(\Delta y_{t}\right) & =\mathrm{E}\left[\left(\Delta y_{t}\right)^{2}\right] \\
& =\int_{t+1}^{t+2}(t+2-\tau)^{2} \mathrm{~d} \tau+\int_{t}^{t+1}(t-\tau)^{2} \mathrm{~d} \tau \\
& =2 \int_{0}^{1} \tau^{2} \mathrm{~d} \tau \\
& =\frac{2}{3},
\end{aligned}
$$

The change in the average stock price has a smaller variance than the change in the stock price.

8

The first-order covariance

$$
\begin{aligned}
\operatorname{Cov} & \left(\Delta y_{t+1}, \Delta y_{t}\right) \\
& =\mathrm{E}\left[\left(-\int_{t+1}^{t+2}(t+1-\tau) \mathrm{d} z_{\tau}\right)\left(\int_{t+1}^{t+2}(t+2-\tau) \mathrm{d} z_{\tau}\right)\right] \\
& =-\int_{t+1}^{t+2}(t+1-\tau)(t+2-\tau) \mathrm{d} \tau \\
& =\int_{0}^{1} w(1-w) \mathrm{d} w(\text { substituting } w:=\tau-(t+1)) \\
& \left.=\left(\frac{1}{2} w^{2}-\frac{1}{3} w^{3}\right)\right]_{0}^{1} \\
& =\frac{1}{6}
\end{aligned}
$$

