Money Creation

The money created by the Federal Reserve is the monetary base, also known as high-powered money.

Banks create money by making loans. A bank loans or invests its excess reserves to earn more interest.

A one-dollar increase in the monetary base causes the money supply to increase by more than one dollar. The increase in the money supply is the money multiplier.

Money-Multiplier Process

The money-multiplier process explains how an increase in the monetary base causes the money supply to increase by a multiplied amount. For example, suppose that the Federal Reserve carries out an open-market operation, by creating \$100 to buy $\$ 100$ of Treasury securities from a bank. The monetary base rises by $\$ 100$.

Step-by-Step Process

The bank has $\$ 100$ of excess reserves, so it loans the $\$ 100$ to earn interest. The borrower uses the money to buy something. The seller receives the $\$ 100$ and deposits it in his bank. Assume that the reserve requirement is $f=.10$. The bank keeps $.10 \times \$ 100=\$ 10$ as reserves, and loans the remaining $\$ 90$ of excess reserves. The borrower uses the money to buy something.

Evaluation of the Money Multiplier

The seller receives the $\$ 90$ and deposits it in his bank. The bank keeps $.10 \times \$ 90$ as reserves, and loans the remaining $\$ 81$ of excess reserves. The borrower uses the money to buy something.

The seller receives the $\$ 81$ and deposits it in his bank, and the process continues.

$$
\begin{aligned}
\Delta M & =100+90+81+\cdots \\
& =100+100 \times .90+100 \times .90^{2}+\cdots,
\end{aligned}
$$

an infinite geometric sum.

As the first term is 100 and the ratio of successive terms is $1-f=.90$, the formula for an infinite geometric sum yields

$$
\Delta M=\frac{100}{1-(1-f)}=\frac{100}{f}=1000 .
$$

Thus the money multiplier is ten: the money supply rises by ten for every one dollar increase in the monetary base.

