Multiplier Effect

The multiplier effect refers to the effect on national income and product of an exogenous increase in demand.

For example, suppose that investment demand increases by one. Firms then produce to meet this demand. That the national product has increased means that the national income has increased. Consequently consumption demand increases, and firms then produce to meet this demand.

Thus the national income and product rises by more than the increase in investment. The multiplier effect is greater than one.
Macroeconomics Multiplier Effect

Autonomous Versus Induced Demand

The initial exogenous increase in demand is an autonomous increase.

The subsequent increase in consumption demand is an induced increase.

The Multiplier Process

The multiplier process is a continuing chain:

> demand up \Rightarrow product up \Rightarrow income up
> \Rightarrow demand up \Rightarrow product up \Rightarrow income up
> \Rightarrow demand up \Rightarrow product up \Rightarrow income up
> \Rightarrow demand up \Rightarrow etc.

Macroeconomics Multiplier Effect

Multiplier Formula

We calculate the total increase in national income and product.
In the multiplier process,
demand up $1 \Rightarrow$ product up $1 \Rightarrow$ income up 1
\Rightarrow demand up $m p c \Rightarrow$ product up $m p c \Rightarrow$ income up $m p c$
\Rightarrow demand up $m p c^{2} \Rightarrow$ product up $m p c^{2} \Rightarrow$ income up $m p c^{2}$
\Rightarrow demand up $m p c^{3} \Rightarrow$ etc.

4

Macroeconomics
Multiplier Effect

Figure 1: Multiplier

Evaluation

The total increase in the national income and product is

$$
\begin{aligned}
\Delta y & =1+m p c+m p c^{2}+m p c^{3}+\cdots \\
& =\frac{1}{1-m p c} .
\end{aligned}
$$

Since $0<m p c<1$, therefore $\Delta y>1$; the multiplier effect is greater than one.

Calculus Derivation

In the model

$$
c[y(i)]+i+g=y(i),
$$

the expression $y(i)$ emphasizes that the solution y depends on i.

Differentiation

Differentiating with respect to i gives

$$
\frac{\mathrm{d} c}{\mathrm{~d} y} \frac{\mathrm{~d} y}{\mathrm{~d} i}+1+0=\frac{\mathrm{d} y}{\mathrm{~d} i} .
$$

The first expression invokes the chain rule.
Rearranging gives

$$
\left(1-\frac{\mathrm{d} c}{\mathrm{~d} y}\right) \frac{\mathrm{d} y}{\mathrm{~d} i}=1,
$$

so the multiplier

$$
\frac{\mathrm{d} y}{\mathrm{~d} i}=\frac{1}{1-\frac{\mathrm{d} c}{\mathrm{~d} y}}
$$

