Infinite Geometric Sum

We derive a general formula for the value of an infinite geometric sum, an expression of the form

$$
\begin{equation*}
x=a+a b+a b^{2}+a b^{3}+\cdots . \tag{1}
\end{equation*}
$$

Each term is just b times the previous term. Here a is the first term, and b is the ratio of successive terms.

To find x, multiply both sides of the equation by b :

$$
\begin{equation*}
b x=a b+a b^{2}+a b^{3}+\cdots . \tag{2}
\end{equation*}
$$

Subtracting equation (2) from equation (1) gives

$$
\begin{aligned}
(1-b) x= & \left(a+a b+a b^{2}+a b^{3}+\cdots\right) \\
& -\left(a b+a b^{2}+a b^{3}+\cdots\right) \\
= & a
\end{aligned}
$$

The other terms cancel, for we have an infinite number of terms that cancel.

Infinite Geometric Sum

Hence

$$
\begin{equation*}
x=\frac{a}{1-b} \tag{3}
\end{equation*}
$$

The formula is valid as long as $|b|<1$. If b were greater than one, then the successive terms in the sum would become larger;
and the sum would be infinite.
Hence

