Fractional Change

Consider a variable x that changes by Δx during a time period of length Δt .

The *fractional change* is

Δx

${\mathcal X}$

For example, a fractional change of .05 would mean an increase of 5%.

Growth-Rate Mathematics

Growth Rate

The growth rate is the fractional change per unit time,

$$\frac{\frac{\Delta x}{x}}{\Delta t},$$

the fractional change divided by the length of the time period.

For example, suppose that the length of the time period is one quarter year, $\Delta t = .25$. And suppose that the fractional change in the variable is .02. Then the growth rate is

$$\frac{.02}{.25} = .08,$$

a rate of 8% per year.

Growth Rate in Continuous Time

The growth rate in continuous time is the growth rate as the length of the period shrinks to zero, $\Delta t \rightarrow 0$.

In the limit, the growth rate is the derivative,

$$\lim_{\Delta t \to 0} \frac{1}{x} \frac{\Delta x}{\Delta t} = \frac{1}{x} \frac{\mathrm{d}x}{\mathrm{d}t}.$$

Derivative of the Logarithm

The growth rate is also the derivative of the logarithm,

$$\frac{\mathrm{d}\ln x}{\mathrm{d}t} = \frac{1}{x}\frac{\mathrm{d}x}{\mathrm{d}t}.$$

For a small changes, the change in the logarithm must be the fractional change,

$$\Delta \ln x \approx \frac{\Delta x}{x}.$$

Constant Growth Rate

If the variable grows at the constant rate g,

 $\ln x_t = \ln x_0 + gt.$

Taking the exponent shows

$$x_t = e^{\ln x_t} = e^{(\ln x_0 + gt)} = e^{\ln x_0} e^{gt} = x_0 e^{gt}.$$

Thus

e^{gt}

represents constant growth at rate g.

Graph

A non-logarithmic graph of $x_t = x_0 e^{gt}$ against time has a steadily increasing slope.

A logarithmic graph of $\ln x_t = \ln (x_0 e^{gt}) = \ln x_0 + gt$ against time has the constant slope *g*. Equal upward and downward shifts along the curve represent equal upward and downward percentage changes in the variable.

Growth Rate of a Product

The growth rate of a product is the sum of the growth rates.

For example, nominal income *Y* is the price level *P* times real income *y*,

$$Y = Py.$$

Growth-Rate Mathematics

Macroeconomics

Then the growth rate of nominal income is the inflation rate plus the growth rate of real income,

1	dY		$d\ln Y$	
\overline{Y}	d <i>t</i>		dt	
			dln <i>Py</i>	
			dt	
		_	$d(\ln P)$	$+\ln y$)
			dt	
			$d\ln P$	$d\ln y$
		=	dt	+ dt
			1 d <i>P</i>	1 dy
		=	$\overline{P} \overline{dt}$	$+ \frac{1}{y} \frac{1}{dt}$.

Macroeconomics

Growth-Rate Mathematics

Growth Rate of a Ratio

Analogously, the growth rate of a ratio is the growth rate of the numerator minus the growth rate of the denominator.

For example, the growth rate of the real wage $\frac{W}{P}$ is the growth rate of the nominal wage *W* minus the growth rate of the nominal price level *P*.