## Fractional Change

Consider a variable $x$ that changes by $\Delta x$ during a time period of length $\Delta t$.

The fractional change is

$$
\frac{\Delta x}{x}
$$

For example, a fractional change of .05 would mean an increase of 5\%.

## Growth Rate

The growth rate is the fractional change per unit time,

$$
\frac{\frac{\Delta x}{x}}{\Delta t},
$$

the fractional change divided by the length of the time period.
For example, suppose that the length of the time period is one quarter year, $\Delta t=.25$. And suppose that the fractional change in the variable is .02 . Then the growth rate is

$$
\frac{.02}{.25}=.08
$$

a rate of $8 \%$ per year.

## Growth Rate in Continuous Time

The growth rate in continuous time is the growth rate as the length of the period shrinks to zero, $\Delta t \rightarrow 0$.

In the limit, the growth rate is the derivative,

$$
\lim _{\Delta t \rightarrow 0} \frac{1}{x} \frac{\Delta x}{\Delta t}=\frac{1}{x} \frac{\mathrm{~d} x}{\mathrm{~d} t} .
$$

## Derivative of the Logarithm

The growth rate is also the derivative of the logarithm,

$$
\frac{\mathrm{d} \ln x}{\mathrm{~d} t}=\frac{1}{x} \frac{\mathrm{~d} x}{\mathrm{~d} t} .
$$

For a small changes, the change in the logarithm must be the fractional change,

$$
\Delta \ln x \approx \frac{\Delta x}{x}
$$

## Constant Growth Rate

If the variable grows at the constant rate $g$,

$$
\ln x_{t}=\ln x_{0}+g t .
$$

Taking the exponent shows

$$
x_{t}=\mathrm{e}^{\ln x_{t}}=\mathrm{e}^{\left(\ln x_{0}+g t\right)}=\mathrm{e}^{\ln x_{0}} \mathrm{e}^{g t}=x_{0} \mathrm{e}^{g t}
$$

Thus

$$
\mathrm{e}^{g t}
$$

represents constant growth at rate $g$.

## Graph

A non-logarithmic graph of $x_{t}=x_{0} \mathrm{e}^{g t}$ against time has a steadily increasing slope.

A logarithmic graph of $\ln x_{t}=\ln \left(x_{0} \mathrm{e}^{g t}\right)=\ln x_{0}+g t$ against time has the constant slope $g$. Equal upward and downward shifts along the curve represent equal upward and downward percentage changes in the variable.

## Growth Rate of a Product

The growth rate of a product is the sum of the growth rates.

For example, nominal income $Y$ is the price level $P$ times real income $y$,

$$
Y=P y .
$$

Then the growth rate of nominal income is the inflation rate plus the growth rate of real income,

$$
\begin{aligned}
\frac{1}{Y} \frac{\mathrm{~d} Y}{\mathrm{~d} t} & =\frac{\mathrm{d} \ln Y}{\mathrm{~d} t} \\
& =\frac{\mathrm{d} \ln P y}{\mathrm{~d} t} \\
& =\frac{\mathrm{d}(\ln P+\ln y)}{\mathrm{d} t} \\
& =\frac{\mathrm{d} \ln P}{\mathrm{~d} t}+\frac{\mathrm{d} \ln y}{\mathrm{~d} t} \\
& =\frac{1}{P} \frac{\mathrm{~d} P}{\mathrm{~d} t}+\frac{1}{y} \frac{\mathrm{~d} y}{\mathrm{~d} t}
\end{aligned}
$$

## Growth Rate of a Ratio

Analogously, the growth rate of a ratio is the growth rate of the numerator minus the growth rate of the denominator.

For example, the growth rate of the real wage $\frac{W}{P}$ is the growth rate of the nominal wage $W$ minus the growth rate of the nominal price level $P$.

