Unemployment Insurance, Wage Dispersion and the Re-entitlement Effect

Adrian Masters Kai You

University at Albany, SUNY.

Newcastle May 23, 2023

Ontribution of the UI system to wage dispersion

- Quantification of the re-entitlement effect
 - (Extent to which workers lower asking wages due to benefit expiry)

- HKV: Sequential search inconsistent with observed wage dispersion
- Why take a low-wage job when a higher offer is imminent?

- HKV: Sequential search inconsistent with observed wage dispersion
- Why take a low-wage job when a higher offer is imminent?
- Two types of response:
 - Jobs are more attractive than characterized by the wage
 - Burdett and Mortensen IER (1998), OTJ search
 - Burdett et al IER (2011), Learning-by-doing
 - ② Unemployment is more pernicious than in the simple model
 - Ortego-Marti JME (2016), Skill decay,

- HKV: Sequential search inconsistent with observed wage dispersion
- Why take a low-wage job when a higher offer is imminent?
- Two types of response:
 - Jobs are more attractive than characterized by the wage
 - Burdett and Mortensen IER (1998), OTJ search
 - Burdett et al IER (2011), Learning-by-doing
 - ② Unemployment is more pernicious than in the simple model
 - Ortego-Marti JME (2016), Skill decay,
- UI benefit expiry acts through both channels

- Reduced-Form
- Model
- Calibration
- Counterfactuals
- Extensions

Survey of Income and Program Participation (SIPP) 1996-2017, Prime-age unemployed males on UI

Table: Estimation on log U to E Wages

	Coef.	Est.	Std. Dev.
1 _{1st benefit quartile} * 1 _{networth <0} * log <i>Ulbenefit</i>	β_1	0.405**	0.167
$1_{\text{higher benefit quartiles}} * 1_{\text{networth} < 0} * \log Ulbenefit$	β_2	0.290**	0.119
$1_{1st benefit quartile} * 1_{networth > 0} * log Ulbenefit$	β_3	0.167	0.137
$1_{\text{higher benefit quartiles}} * 1_{\text{networth} > 0} * \log Ulbenefit$	β_4	0.250*	0.120
$1_{1 st benefit quartile} * 1_{networth < 0} * MonthstoExpiry$	γ_1	0.031	0.120
$1_{\text{higher benefit quartiles}} * 1_{\text{networth} < 0} * MonthstoExpiry$	γ_2	-0.040	0.089
$1_{1 st benefit quartile} * 1_{networth > 0} * MonthstoExpiry$	γ_3	0.100	0.079
$1_{higher benefit quartiles} * 1_{networth>0} * MonthstoExpiry$	γ_4	0.103*	0.055
Observations	309		

Controls: age, education, occupation, state, months. Wage-duration index $\approx 5\%$ (not statistically significant)

Adrian Masters (UAlbany)

UI Re-entitlement

• Baseline Diamond-Mortensen-Pissarides (DMP) model

- Baseline Diamond-Mortensen-Pissarides (DMP) model
- On-the-job search (Burdett and Mortensen 1998)

- Baseline Diamond-Mortensen-Pissarides (DMP) model
- On-the-job search (Burdett and Mortensen 1998)
- Directed search (Moen 1997)

- Baseline Diamond-Mortensen-Pissarides (DMP) model
- On-the-job search (Burdett and Mortensen 1998)
- Directed search (Moen 1997)
- Directed on-the-job search (Delacroix and Shi 2006)

- Baseline Diamond-Mortensen-Pissarides (DMP) model
- On-the-job search (Burdett and Mortensen 1998)
- Directed search (Moen 1997)
- Directed on-the-job search (Delacroix and Shi 2006)
- Block-recursive equilibrium (Menzio and Shi 2011)

- Discrete time with infinite horizon
- Mass 1 of identical workers
 - Mass of unemployed is *u*.
 - Unemployed receive z utils per period from non-market activities
- Number of vacant jobs/firms, v, controlled by free-entry
 - Vacancies cost c per period to maintain
 - Jobs self-destruct with probability $\boldsymbol{\lambda}$
- Workers and firms are risk-neutral
- Common discount rate, r

- A matched pair of job and worker produces output p per period
- Workers direct search to markets indexed by,
 - Wage, w
 - Periods of remaining UI entitlement, $i \in \mathcal{I} = \{0, 1, .., I\}$
 - Market tightness, $\theta =$ vacancies/job-seekers in that market
- Unemployed workers meet a vacancy with probability $m(\theta)$
 - (Standard properties)
- Vacancies meet job-seekers with probability $m(\theta)/\theta$
- On-the-job search efficiency γ

- $b(w) = \min\{\phi w, \bar{b}\}$ where w is the worker's prior wage
- $i \in \mathcal{I} = \{0, 1, .., I\}$ represent the number of periods of a worker's UI entitlement
 - while unemployed,

$$i_{t+1} = \max\{i_t - 1, 0\}$$

• while employed,

$$i_{t+1} = \left\{ egin{array}{cc} \min\{i_t+1,I\} & \mbox{with probability } q_e \in [0,1] \\ i_t & \mbox{with probability } 1-q_e \end{array}
ight.$$

• UI financed by payroll tax, τ , levied on firms

.

$$rac{m(heta)}{ heta}V^i_f(w)\leq c \,\, ext{and}\,\, heta\geq 0$$

with complementary slackness.

Market tightness indexed by *i* and *w*, $\theta(i, w)$

Measures of employed and unemployed workers

$$e = \sum_{i \in \mathcal{I}} \int_0^p e^i(w) dw$$
 and $u = \sum_{i \in \mathcal{I}} \int_0^p u^i(w) dw$

Government budget constraint

$$\sum_{i\in\mathcal{I}}\int_0^p\tau w e^i(w)dw=\sum_{i\in\mathcal{I}\setminus\{0\}}\int_0^p b(w)u^i(w)dw.$$

Definition

A steady state, free-entry, directed search equilibrium consists of a pair of worker policy functions, $\tilde{w}_y^i : \mathcal{I} \times \{e, u\} \times [0, p] \rightarrow [0, p]$ and $\tilde{\theta}_y^i : \mathcal{I} \times \{e, u\} \times [0, p] \rightarrow \mathbb{R}_+$, a set of active submarkets, $\mathcal{A} \subset \mathcal{I} \times [0, p]$, a market tightness function, $\theta : \mathcal{A} \rightarrow \mathbb{R}_+$, the steady state population measures, $e^i(w)$ and $u^i(w)$, and a pay-roll tax rate, τ such that:

- Given the set of active markets, the market tightness function and pay-roll tax rate, the worker policy functions emerge from optimal search and matching.
- 2 The set of active markets, A, is determined where $\frac{m(\theta)}{\theta}V_f^i(w) = c$ and $\theta > 0$
- Solution The tightness function, θ(i, w), emerges from free-entry of vacancies for all (i, w) ∈ A.
- The steady state population measures, $e^i(w)$ and $u^i(w)$ represent the ergodic distribution that emerges from the worker policy functions.
- The balanced budget condition holds.

Time unit: 1 month

Matching function: $m(\theta) = \min \{m\theta^{\eta}, 1\}$

	Symbol	Value
Monthly discount factor	1/(1+r)	0.996
Value of leisure	Ζ	0.494
Matching function TFP	т	0.1
Tightness elasticity	η	0.653
Vacancy cost	С	0.121
On-the-job search efficiency	γ	0.834
Separation rate	λ	1.5%
Max. eligibility	1	6
Replacement ratio	ϕ	50%

- γ identified from the overall employment-to-employment movement rate.
- η identified from differential matching rates between workers searching for higher and lower wages.
- z comes from $\varepsilon_{w,b}$
- c pinned down by the overall unemployment rate.

Baseline Results: Wage distribution

Adrian Masters (UAlbany)

Newcastle May 23, 2023 15 / 27

Baseline Results: Worker values

Adrian Masters (UAlbany)

Newcastle May 23, 2023 16 / 27

Baseline Results: Unemployed application wages

Adrian Masters (UAlbany)

Newcastle May 23, 2023 1

Baseline Results: Employed application wages

Adrian Masters (UAlbany)

Newcastle May 23, 2023 18 / 27

	Baseline model	Indefinite benefits
Replacement ratio	50%	26.5%
Unemployment rate	6.37%	9.28%
Tax rate	2.88%	2.74%
Mean wage	0.9301	0.9382
Minimum wage	0.8327	0.8992
Wage Mean-Min ratio	1.1169	1.0434
Wage-Duration Index	1.44%	0%

	Baseline model	Indefinite benefits
Replacement ratio	50%	26.5%
Unemployment rate	6.37%	9.28%
Tax rate	2.88%	2.74%
Mean wage	0.9301	0.9382
Minimum wage	0.8327	0.8992
Wage Mean-Min ratio	1.1169	1.0434
Wage-Duration Index	1.44%	0%

	Baseline model	Fixed and indefinite benefit
Benefit	50% of wage	0.3109
Unemployment rate	6.37%	7.93%
Tax rate	2.88%	3.01%
Mean wage	0.9301	0.9354
Minimum wage	0.8327	0.8915
Wage Mean-Min ratio	1.1169	1.0492
Wage-Duration Index	1.44%	0%

	OTJ search(baseline)	No OTJ search
Replacement ratio	50%	53.86%
Unemployment rate	6.37%	5.67%
Tax rate	2.88%	2.71%
Mean wage	0.9301	0.9388
Minimum wage	0.8327	0.9293
Wage Mean-Min ratio	1.1169	1.0102
Wage-Duration Index	1.44%	0.32%

	Symbol	Values
Tightness elasticity	η	0.637
Vacancy cost	С	0.309
On-the-job search efficiency	γ	0.654
Value of leisure	Ζ	0.338
Separation rate switch rate	q_λ	0.25
High Separation rate	λ_h	10.0%
Low Separation rate	λ_I	1.0%

æ

	Baseline	Two λ 's
% of U pop with exhausted UI	17.6%	35.4%
Replacement ratio	50%	50%
Unemployment rate	6.37%	6.80%
Tax rate	2.88%	2.31%
Mean wage	0.9301	0.8919
Minimum wage	0.8327	0.7777
Wage Mean-Min ratio	1.1169	1.1469
Wage-Duration Index	1.44%	0.90%

æ

Extension: Two separation rates

Adrian Masters (UAlbany)

Newcastle May 23, 2023 25 / 27

	CRRA=2	Linear Utility(Baseline)
Unemployment rate	9.35%	6.37%
Tax rate	3.14%	2.88%
Mean wage	0.6863	0.9301
Minimum wage	0.4904	0.8327
Wage Mean-Min ratio	1.3893	1.1169
Wage-Duration Index	2.53%	1.44%

æ

Image: A matrix

- We consider the role of UI in the generation of wage dispersion
 - Baseline MMR=1.117
- We quantify the re-entitlement effect using the WDI
 - Baseline WDI=1.44%
- Results point to strong interaction between on-the-job search and UI entitlement.