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Abstract. This paper explores parallel programming issues that are relevant to
the efficient implementation of spatial data handling procedures on current paral-
lel computers through sample implementations of the Douglas line simplification
procedure. Using source code-equivalent implementations of the Douglas proced-
ure, this paper analyses the performance characteristics of two parallel imple-
mentations, compares their performance characteristics to those of a sequential
implementation, and identifies critical components of the parallel implementations
that enhance or inhibit their overall performance values. The results of this work
show that the selection of appropriate interprocessor communication and load
balancing strategies are crucial to obtaining large speedup values over comparable
sequential implementations.

1. Introduction

Parallel computing has been applied to a wide array of problems in spatial data
handling, ranging from early work in image processing (Rohrbacher and Potter
1977) and drainage basin analysis (Peucker and Douglas 1975) to recent papers on
network analysis (Ding et al. 1992), cartographic name placement (Mower 1993),
line intersection detection (Franklin et al. 1989, Hopkins et al. 1992), viewshed
analysis (Mills et al. 1992), and other related topics. Collectively, these papers
represent divergent approaches to parallel computing, each drawing upon a specific
computing architecture and software development environment to meet the data
modelling requirements of its application.

The success of a parallel implementation is most often measured by its speedup
factor; the reduction in execution time that it gains over a comparable sequential
implementation. Finding the combination of hardware and software environments
that generates the greatest speedup factor for an implementation can be quite difficult,
especially for the novice parallel developer. Moreover, manufacturers frequently
distribute parallel hardware, programming languages, compilers, and operating sys-
tems in pre-release versions. Undergoing almost constant revision, these environ-
ments rarely provide source code optimization tools. Users are burdened with the
task of finding and avoiding expensive or unimplemented programming features,
often by gleaning software release notes or by learning from the experiences of other
programmers.

This paper is intended to serve the novice parallel programmer by illustrating
key programming issues that are relevant to the efficient implementation of spatial
data handling procedures on current parallel computers. The discussion of these
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issues will centre on the implementation of the Douglas procedure for line simplifica-
tion in a procedure-level programming environment. In summary, this paper:

1. Identifies critical aspects of procedure-level parallel programming environ-
ments that effect execution performance.

2. Tllustrates these aspects by implementing them in sample parallel code.

3. Quantifies the effects of these aspects on performance by providing an analysis
of the run-time characteristics of the example implementations (including
comparisons to the characteristics of a functionally-equivalent sequential
implementation).

4. Suggests strategies for increasing the performance of a procedure-level parallel
implementation.

The results of this work show that the selection of appropriate interprocessor
communication and load balancing strategies are crucial to obtaining large speedup
values over comparable sequential implementations. Inappropriate selection strat-
egies can result in execution times that, at best, equal or barely surpass those of
functionally-equivalent sequential programs.

2. Efficiency issues in parallel processing

A parallel approach achieves a time reduction over a functionally-equivalent
sequential approach by dividing a problem into components that can be computed
simultaneously, with or without communication among the components.

As an analogy, suppose that 25 identical jigsaw puzzles in unopened boxes were
to be solved by one or more people. Clearly, 25 people of equal ability, each working
on his or her own puzzle simultaneously, should solve all of the puzzles in the time
required for one person to complete a single puzzle. Now suppose that just one of
the puzzles were to be solved by the same 25 people working together. Any strategy
that the group adopts will require extensive communication to coordinate their
activity. It is very unlikely that the group will complete the puzzle in 1/25 of the
time required for a single person!

What happens if the puzzles differ in size and complexity? Those who are working
independently on small, simple puzzles will finish well before those working on large
puzzles. Certainly, the group can reduce the total time required to solve all the
puzzles (measured from the starting clock time to the time that the last puzzle is
finished) if those who finish early help the remaining workers.

Communication and work partitioning (load balancing) strategies are similarly
crucial to the success of a parallel algorithm. Just as a worker can be distracted by
a continuous series of instructions from a supervisor or coworker, the instruction
streamn on a parallel processor is interrupted by interactions with other processors.
A good supervisor shifts job assignments to accommodate changing work loads; a
parallel algorithm must similarly assure that expensive computing resources are
being fully utilized.

2.1. Parallel approach used in this paper

To illustrate the effects that varying communication and load balancing strategies
imposed upon implementation execution statistics, two procedure-level parallel vari-
ants of the Douglas line simplification algorithm will be presented, implemented,
run, and analysed. The performance of each implementation will be compared to a
functionally-equivalent sequential implementation.
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Procedure-level parallel programs are generally implemented on multiple instruc-
tion stream, multiple data stream (MIMD) computers. Processors execute independ-
ent instruction streams asynchronously using programming constructs that resemble
concurrent programming on sequential computers, (Smith 1993).

3. The Douglas procedure for line simplification

Using a vector representation of a cartographic line, the Douglas procedure
locates significant vertices among the set occurring between the starting and ending
nodes of the line (figure 1). A vertex is considered to be significant if its orthogonal
distance from a baseline constructed between the starting and ending nodes is greater
than that of any other vertex in the set and greater than a predefined tolerance. The
procedure is applied recursively to segments bounded by significant vertices until no
new significant vertices are found.

The Douglas procedure (Douglas and Peucker 1973) was selected to demonstrate
and evaluate parallel programming techniques because it is simple, effective, and
well known. In this regard, the parallel variants that follow retain the simplicity of
the original sequential procedure and purposely avoid enhancements suggested by
later authors.

Readers interested in implementing line simplification in sequential production
environments are encouraged to see Hershberger and Snoeyink (1992). The authors
propose an adaptation to the Douglas procedure that operates on the convex hull
of a cartographic line, reducing the worst-case running time from O(n?) in the
original procedure to O(n log, n).

4. Implementing the Douglas procedure

Wherever possible, the sequential implementation and the parallel implementa-
tions share common source code written in the C programming language for the
Thinking Machines CM-5 computer. The CM-5 consists of from 32 to 1024 RISC
microprocessors that can be programmed in data-level or procedure-level parallel
modes (Thinking Machines Corporation 1991). The sequential and parallel imple-
mentations were run on data from modified U.S.G.S. 1:2000000 series DLG files
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Figure 1. Douglas algorithm. In a, the maximum distance between a vertex on a cartographic
line and the baseline SE occurs at A. Since the distance 4 at A is greater than the
tolerance t, vertex A is retained on the simplified line. The cartographic line is
subdivided at A and processing continues in b, Here, d is greater than ¢ at B on
baseline SA; B is retained and this segment of the cartographic line is subdivided
again. On AE, however, d is less than ¢ so C is not retained and no further subdivision
of this segment is performed.
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covering the continental United States. Only the hydrography coverages were used
for this paper. To enhance the search for lines that fall within the user’s window, the
author modified the DLG files by prefacing each line with the coordinates of its
minimum bounding rectangle (MBR) in internal DLG coordinates. To accommodate
user windows extending over DLG boundaries, the MBR for each DLG was calcu-
lated and stored in a metafile. At run time, the implementations convert the bounding
coordinates of the user’s rectangular window, entered in degrees, minutes, and
seconds of latitude and longitude, to DLG internal coordinates (figure 2). They
compare the user’s window against the MBRs of the converted DLGs, flagging
intersecting files for processing. For those that intersect, the implementations check
the MBR of each line in the DLG for intersection with the user’s window, rejecting
lines that fall outside it.

4.1. The sequential implementation

After determining the uset’s input window and assembling the list of pertinent
DLG files, the sequential implementation scans each DLG in turn, looking for lines
that fall within the input window. When it finds a valid line, it sends it to the
simplification procedure which recurses until no new significant vertices are found.

User specifies the bounding
latitude and longitude
coordinates of the desired window.

15 1 7 1
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3} 12
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8

The user's window is converted to DLG
infernal coordinates and tested against
DLG file MBRs (held in a metafile)

for intersection. Here, the user's window
intersects the MBRs of files 6, 10, and 11.

+—— MBR for DLG 6

Lines having MBRs that
intersect the user's
window are simplified; all User ;
others are ignored. In this Window
example, lines Aand B in

DLG file 6 will be simplified; A — ]
line C will not.

None of the lines in file 11
will have infersecting MBRs.

Figure 2. The user’s view of the sequential and procedure-parallel implementations of the
Douglas algorithm.
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The significant vertices are written to the output file and control is returned to the
reading procedure. Execution continues until all lines in the relevant DLGs have
been simplified.

4.2. The parallel implementations

Vaughan, ef al. (1991) propose three parallel implementations of the Douglas
procedure, the first exploiting the parallelism found in the repetitive calculation of
distance offsets, the second in the application of the simplification procedure to
subdivisions of line segments, and the third which combines elements of the first two
implementations. Although their article addresses load balancing issues, it does not
provide an explicit indication of the role that interprocessor communication costs
play in overall performance characteristics.

To isolate the contribution of these costs in support of a load balancing strategy,
the two parallel implementations presented in this paper take a different approach.
The first implementation (procedure-parallel-by-file or PPBF) keeps interprocessor
communication costs as low as possible by running identical copies of the sequential
implementation on each worker processor asynchronously, each processing its own
DLG (figure 3). This approach typically causes processor work load imbalances in
late processing stages. The second implementation (procedure-parallel-by-line or
PPBL) addresses this imbalance by distributing work to processors on demand. To
do so, this implementation must incur higher interprocessor communication costs.

Both the PPBF and PPBL implementations use a master-worker model in which
a master processor coordinates the distribution of line segments to worker processors.
In the PPBF implementation, the master assigns each worker a DLG through a
message passing operation. No messages pass between the workers. Each worker
reads its own DLG independently and asynchronously from a parallel disk array
and writes its output (a list of retained vertices) to a global file, also located on the
disk array. Although each worker could have written its output asynchronously to
its own file on the parallel disk array, it was found in preliminary testing that this
operation took longer to perform than writing to a global file. Hence, both PPBF
and PPBL write their output to global files. The PPBF procedure is as follows:
On the master:

The user's window
intersects the MBRs
11 of files 6, 10, and 11.

0 |No
The master tells workers

W1, W2, and W3 to open

DLG files 6, 10, and 11

respectively.

Workers read and simplify

lines in their DLGs independently

L and asynchronously. On completing

| @ line, a worker wiites the coordinates

of the significant vertices to a global file
\ / before processing a new line. A worker
Ad locks the file until it finishes writing its data.

Figure 3. Structure of the procedure-parallel-by-file (PPBF) implementation.
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Determine the user’s geographical window;
Assign each DLG intersecting the user’s window to a unique worker processor;
On each worker:
While unprocessed lines remain in the worker’s DLG:
Read a line from the DLG;
If this line intersects the user’s window:
Apply the Douglas procedure recursively to the line and all its
children;
Save any significant points to a buffer;
Write the buffer of significant points to disk.

Each PPBF worker operates on the lines in its file independently. Therefore, the
implementation will continue to run as long as one of the workers still has lines to
simplify. It will achieve its greatest efficiency and speedup over a comparable sequen-
tial implementation when the data is divided equally among the workers.

Figure 4 shows a user window that falls completely within 1 of 9 rectangular
DLGs with identical amounts and distributions of line vertices. Since all of the lines
in this example are handled by one worker, the implementation will behave sequen-
tially. Figure 5 shows another user window overlapping all 9 DLGs. Each worker

1 2 3
’ 4 5 6
ser
window ‘
7 8 9

Figure 4. Expected speedup for PPBF when the user’s window falls within 1 of 9 rectangular
DLGs with identical amounts and distributions of line vertices. Since all of the lines
will be simplified by the processor associated with DLG 5, the implementation will
perform no better than the sequential implementation on the same window.

User ‘
wincdow

1 2 3
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Figure 5. Expected speedup for PPBF when the user’s window completely covers all 9 DLGs,
Each worker will simultaneously process 1/9 of the lines in the user’s window. In this
case, the Principle of Unitary Speedup limits the maximum attainable speedup for
PPBF over the sequential implementation to a factor of 9.
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will require the same amount of time to simplify its lines; and, if each begins its work
at the same time, the implementation will complete all of the lines in the 9 DLGs
in 1/9 of the time required for the sequential implementation. Figure 6 shows another
user window superimposed on the same data, centred on the central DLG and
intersecting small portions of the surrounding DLGs. In this example, the time
required to process the central DLG will be much greater than that required to
process any of the surrounding DLGs. The expected speedup for the PPBF imple-

mentation, disregarding I/O costs, can be stated as § where S is the expected

WLMAX
speedup over a comparable sequential implementation, L is the total number of lines

in the user window, and W, is the maximum number of lines handled by a single
processor. For figure 4, L and Wy, 4y are identical, giving an expected speedup of 1.
In figure 5, Wy p.x 15 1/9 of the value of L, providing an expected speedup of 9. The
expected speedup for figure 6 will not be much greater than 1 since Wy .y is
approaching L in this example.

To maintain a higher level of efficiency throughout program execution, the second
parallel version (PPBL) distributes valid lines in packets to workers as they become
available (figure 7). A worker simplifies all the children of any segment it receives
from the master. Each processor writes its output to a global file on the disk array,
and waits for another packet of lines from the master processor. Three types of
messages must pass between the master and a worker to transmit a packet:

1. the worker requests a line packet from the master;
2. the master transfers a line packet vector to the worker; and
3. the master transfers packet display parameters to the worker.

Both the sending and receiving processors synchronize during message transfer,
requiring the sending processor to wait until the receiving processor is ready to
accept the transmission. Increasing the number of lines sent in each packet reduces
the number of packets, and hence the number of messages that must be sent to the
workers. This also allows the master to read ahead of the workers, eliminating an
I/O bottleneck. If the packet size is very large, however, load imbalances will occur
late in processing as the total number of remaining lines falls below the packet size.

1 2 3
4 5 o]
User
window »
7 8 9

Figure 6. Expected speedup for PPBF when the user’s window overlaps one of the DLGs
completely, but overlaps the remainder by a small amount. Since most of the lines in
the user window fall in DLG 85, its processor will remain active long after the processors
for the other windows have completed simplifying their lines. The overall execution
time for this PPBF run will be only slightly less than that of the sequential implementa-
tion on the same window.
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Each worker simplifies the
lines in its packet, writes the

waits for the next packet.

/ ouiput to a global file, and
L

Global output

Figure 7. Structure of the procedure-parallel-by-line (PPBL) implementation.

Preliminary testing of the implementation on the largest user window showed that
a packet size of 40 lines (approximately 5 per cent of the total number of lines sent
to each processor for the largest user window) reduced the running time of the
implementation by 38 per cent over the same window using a packet size of 1
(figure 8). The expected speedup of the PPBL implementation, disregarding syn-
chronization and I/O costs, is directly proportional to the number of workers. The
PPBL procedure is summarized as follows:

On the master:

Determine the user’s geographical window;

Determine which DLGs intersect the user’s window;

While unprocessed lines remain in the DLGs;
Read a packet of lines from the current DLG into a buffer;
Send the line buffer to the next available worker;

Figure 8.
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On each worker:
Receive a line buffer from the master;
While unprocessed lines remain in the buffer;
Get the next line from the buffer;
If this line intersects the user’s window:
Apply the Douglas procedure recursively to the line and all its
children;
Save any significant points to a buffer;
Write the buffer of significant points to disk.

The second implementation of Vaughan, et al. (1991) also partitions the workload
by line segment. Their implementation differs from PPBL, however, in that they
store all unprocessed segments by their endpoints on a global stack, visible to all
processors. The stack must be locked so that only one processor can read or write
one segment at a time. Whether locking presents a significant processing bottleneck
for their implementation is unclear.

5. Testing the performance characteristics of the implementations

The author established the performance characteristics of the sequential and
parallel implementations by running them over a series of 25 user windows containing
between 16 and 23 830 lines. All of the implementations were executed on a Thinking
Machines CM-5 computer at the Northeast Parallel Architectures Center (NPAC)
at Syracuse University. The NPAC CM-5 is installed with 32 Sun Microsystems
SPARC processors. The sequential implementation was compiled and run as a single-
processor procedure-level parallel program on the CM-5 to provide an execution
environment comparable to that of the PPBF and PPBL implementations.

Timing data for the sequential and parallel implementations were gathered from
calls to timing functions within CMMD, the CM-5 message passing library. Each
processor implements its own timing functions and records only times for local
operations. No synchronization is required among the workers to collect timing data.

Reported timings for the parallel implementations are broken down by procedure
in some of the following figures. Unless otherwise noted, the reported values represent
accumulated timings across the processors. The time to process a read operation,
for example, would be reported as the accumulated time that it took to perform the
operation on all processors. The author calculated accumulated times by summing
the collected timer data for an operation across all processors. There is currently no
available method to record the real time of a procedure, starting with the wall-clock
time at the execution of its first instruction on some processor and ending at the
time of the execution of its last instruction on the last remaining processor.

6. Results

Figure 9 shows execution statistics for the PPBF, PPBL, and sequential imple-
mentations. The PPBF implementation produced the lowest execution times of the
three implementations. The following discussion will explore the characteristics of
each implementation that led to these results.

6.1. Procedure-parallel-by-file (PPBF)

The PPBF implementation was expected to achieve a speedup over the sequential
implementation proportional to the ratio of the total number of lines handled by all
workers to the maximum number of lines handled by an individual worker. Figure 10
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Figure 9. Overall execution times for PPBF, PPBL, and sequential implementations for each
user window.
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Figure 10. Adjusted PPBF speedup values for each user window. Execution times for reading
lines on the sequential implementation were replaced with times to read lines on PPBF.

compares the expected and actual speedup of the PPBF implementation over the
sequential implementation. To compensate for very poor parallel I/O performance
on read operations in the PPBF implementation, timings for read operations in the
sequential implementation were substituted with the parallel I/O timings for the
corresponding runs. Actual speedup values generally correspond to expected speedup
values for all user windows.

6.2. Procedure-parallel-by-line (PPBL)

As expected, the PPBL procedure distributed work evenly across the processors,
sending from 768 to 770 lines to each of 31 worker processors for the largest user
window (figure 11). In contrast, the PPBF implementation sent 0 lines to 14 of the
processors (those with no assigned DLG file) and from 379 to 3212 lines to the rest.
Unfortunately, figure 12 shows that the PPBL implementation achieved low overall
speedup values.

The poor performance of this implementation is due predominantly to the cost
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Figure 12. Expected and actual speedup values for PPBL over the sequential implementation
for each user window.

of performing message passing operations. Figure 13 compares the time that worker
nodes spent performing message passing operations to all other worker operations
for the PPBF and PPBL implementations. Although the costs of implementing
message passing operations were high for both implementations, they especially
dominated the PPBL implementation.

Of the three types of message passing operations performed by a PPBL worker,
the first type, requesting a line packet from the master processor, required the longest
execution times (figure 14). Most of this time is spent waiting for the master to
respond to the request. The amount of time that the worker remains idle depends
upon the amount of time that the master processor spends within its message polling
loop. For the PPBL implementation, the tasks within the loop were limited to serving
requests from the workers.

How much of the difference between the expected and actual speedup values for
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Figure 14.  Accumulated time spent on PPBL workers performing message passing by type.
Type 1 is a worker request for a packet from the master; type 2 is a line packet transfer
to a worker; and type 3 is a line packet display parameter transfer to a worker.

PPBL can be accounted for by message passing operation execution times? Figure 15
shows the speedup values of PPBL over the sequential implementation excluding
the cost of line packet request messages on the worker processors. Speedup values
increase considerably for all runs but only one exceeded the expected speedup value
of 31. The others attained values ranging from 3.32 to 25.36.

It is likely that much of the remaining gap between the expected and actual
speedup values for the PPBL implementation could be closed by excluding message
passing operations on the master processor, which occupied from 2 to 29 per cent
of its running time over the 25 user windows. However, message passing operations
on the master processor overlap temporally with those on the workers. If the amount
of overlap is unknown, subtracting the execution times for both the master and
worker message passing operations from the overall program execution time will
double-count overlapping periods. The amount of overlap can be determined by
comparing the absolute starting times and running times of the message passing
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Figure 15. Adjusted PPBL speedup values for each user window. Execution times for reading
lines on the sequential implementation were replaced with times to read lines on
PPBL. Execution times for worker line packet request messages were disregarded.

functions on the master and worker processors. Reliable absolute timing data could
not be collected for this project; therefore timings for message passing operations on
the master processor were not deducted from the overall execution times.

7. Conclusions

This paper has shown that the successful development of a parallel implementa-
tion must be based upon knowledge of the underlying hardware and software of the
target platform. Without it, measures taken to enhance system performance can be
thwarted by the cost of their implementation. The PPBF implementation achieved
shorter execution times and greater speedup values than the PPBL implementation
by sacrificing load balancing for reductions in communication overhead. Most of
the costs incurred in the PPBL message passing operations were due to blocking—
forcing a processor to wait until another catches up with it to exchange data. Many
parallel environments now support asynchronous message passing operations with-
out blocking. Unfortunately, these operations were not fully implemented on the
CM-5 at the time of this writing. Their incorporation would have greatly reduced
the amount of idle time in the PPBL implementation.

Disk I/O operations, whether performed on parallel or sequential computers,
create processing bottlenecks. Parallel read operations in the PPBF implementation
performed particularly slowly. Although the speed of these operations can change
dramatically with hardware and operating system upgrades, the developer is always
advised to keep such operations to an absolute minimum.

The continual, rapid evolution of parallel systems is likely to continue the
perception, even among developers, that implementing a parallel algorithm is a black
art, a combination of trial and error, blind luck and just a bit of theory. As parallel
computing matures, stability and standardization across platforms will eventually
bring the theory closer to practice.
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