@ Pergamon

0098-3004(94)00047-6

Computers & Geosciences Vol. 20, No. 9, pp. 1365-1378, 1994
Copyright ¢ 1994 Elsevier Science Ltd
Printed in Great Britain. All rights reserved
0098-3004/94 $7.00 + 0,00

DATA-PARALLEL PROCEDURES FOR DRAINAGE BASIN
ANALYSIS

James E. MOwER
Department of Geography and Planning, SUNY at Albany, Albany, NY 12222, US.A.

(Received 16 December 1993; accepted 18 April 1994)

Abstract—Procedures for drainage basin delineation and modeling of drainage flow accumulation are
provided for single instruction stream, multiple data stream (SIMD) computers. Performance statistics
were gathered from a series of windows on a DEM and analyzed for an implementation of the procedures,
written in C* and executed on a Thinking Machines CM-5 in SIMD mode. Results of the analysis show
that the SIMD implementation completes execution in less than one-half the time of a comparable
sequential implementation when both are run over the largest window. The results also show that
execution times for the SIMD implementation initially increase linearly with the ratio of virtual processors

to physical processors.

Key Words: Drainage basin delineation, Drainage flow accumulation modeling, SIMD, C*,

INTRODUCTION

Numerous hydrological modeling applications rely
upon procedures that automatically extract drainage
basin boundaries and drainage networks from grid
cell DEMs. Some of these procedures, notably those
that calculate slope, aspect, and cell drainage direc-
tion, operate locally on grid cells and their 8-adjacent
neighbors. If each grid cell were represented by a
unique processor on a sufficiently large parallel com-
puter, the procedures in this group would execute
simultaneously on all grid cells. Other procedures,
such as those that perform drainage basin delineation
and drainage flow accumulation, propagate values
from starting cells to most or all of the other cells in
the grid in iterative or recursive steps. Given the same
parallel computer, these procedures also would exe-
cute simultaneously, but for a subset of the pro-
cessors on any iteration. Naturally, the procedures in
the first group achieve a higher degree of parallelism
than those of the second group. Nonetheless, parallel
implementations of the procedures in the second
group also can achieve significant speed-ups over
comparable sequential implementations.

This paper will introduce data-parallel procedures
for performing drainage basin delineation and
drainage flow accumulation on single instruction
stream, multiple data stream (SIMD) computers.
SIMD computers can apply identical operations syn-
chronously over multiple spatial entities, providing
elegant and efficient solutions to certain problems in
drainage basin analysis. The author has tested these
procedures on a CM-5 running in its synchronous
mode as a SIMD computer. Performance statistics
for the SIMD implementation and a comparable

CAGEO 209G

sequential implementation for a range of drainage
analysis routines for a range of DEM sizes are
included and discussed here.

The SIMD implementation was expected to attain
large performance speed-ups for the sequential im-
plementation within procedures that keep most of the
processors active simultaneously throughout their
execution. Speed-ups also were expected for the re-
maining SIMD procedures, written specifically to
exploit the strengths of SIMD execution environ-
ments. Speed-ups were not expected for code invok-
ing expensive parallel operators, including those that
perform certain interprocessor communication and
processor context setting tasks. To show the effects of
such operations on execution times, two SIMD ap-
proaches to the drainage basin delineation problem
are presented and tested. Both approaches are equiv-
alent functionally but differ in the number of com-
munication and processor context setting operations
that they perform.

The SIMD and sequential implementations oper-
ate on standard USGS 1:24,000 DEMs and produce
PostScript image files displaying analytical hill shad-
ing, drainage basin delineation, and drainage flow
accumulation at a user-selected scale. An example
from the source code for the CM-5 implementation
is provided to illustrate key programming issues.

No parallel procedure for automated mapping will
gain general acceptance if it must be performed in
isolation from other mapping activities, Fortunately,
developmental work on parallel algorithms for name
placement (Mower, 1993), line simplification
(Mower, 1994), polygon overlay (Franklin and
others, 1989; Hopkins, Healey, and Waugh, 1992),
location/allocation analysis (Ding, Densham, and

1365

1366

Armstrong, 1992), viewshed analysis (Mills, Fox, and
Heimbach, 1992), and other applications is helping to
stimulate interest in parallel computers as environ-
ments for solving problems in spatial data handling.

DELINEATING DRAINAGE BASIN BOUNDARIES
AND MODELING DRAINAGE FLOW
ACCUMULATION

The sequential approach

Marks, Dozier, and Frew (1984) developed a recur-
sive, sequential procedure for delineating drainage
basin boundaries from grid cell DEMs. Starting at a
grid cell representing a basin outlet, the procedure
looks at each of the cell’s 8-adjacent neighbors in turn
to see if any, or all are upstream from the outlet
(Fig. 1). If so, the upstream cells are considered
members of the drainage basin and the procedure
applies itself recursively, searching for cells that are
uphill from the new members. Recursion stops along
a thread when no neighbor is determined to drain
toward the current cell.

Until the threads encounter basin boundaries or
the edge of the elevation matrix, the number of cells
actively searching for neighbors at each level of
recursion generally increases with successive levels. In
the worse situation, from the center of a depression
that curves monotonically upward in all directions,
the number of active cells will increase by 8 at
successive steps away from the center (Fig. 2).
Although each active cell conducts its search for new
members identically to and independently of every
other cell, a sequential computer cannot conduct
these searches simultaneously.

O’Callaghan and Mark (1984) developed a recur-
sive, sequential procedure that models drainage flow
accumulation within basis. Starting at a drainage
basin outlet, the O’Callaghan and Mark procedure
looks at each of the cell’s 8-adjacent neighbors in turn
to see if any, or all are upstream from the outlet. If
s0, the procedure calls itself recursively, searching
from new upstream cells until a ridge or the edge of
the matrix is discovered. Each call of the procedure

J. E. MOWER

returns the number of upstream cells for the current
cell. If this value is greater than the threshold (a
user-defined minimum number of upstream cells), the
cell is considered to represent a stream channel.

The data-parallel approach

The drainage basin delineation and drainage flow
accumulation procedures introduced here use a data-
parallel approach that associates each grid cell in a
DEM with a unique virtual processor (Fig. 3). The
following sections describe this approach to problem
solving and its application to these two procedures.

The data-parallel approach applies identical oper-
ations simultaneously to data elements distributed
across an array of virtual processors (VPs) that, in
turn, are mapped onto a set of parallel physical
processors (PPs). If the number of VPs requested by
a program is greater than the number of available
PPs, each PP functions as VP /PP VPs, where VP is
the number of requested VPs and PP is the number
of available PPs. If VP/PP <1, then each VP is
represented by a unique PP. SIMD machines such as
the Thinking Machines CM-2 employ large numbers
of small processors (up to 65,536 bit-serial processors
in the CM-2), providing lower VP/PP ratios than
machines such as the CM-5 which provide smaller
numbers of more powerful processors (up to 1024
Sun Microsystem SPARC processors in the CM-5).
In preliminary tests of the implementations presented
here, the author determined that the implementations
require approximately the same time to run on a
CM-2 with 8192 allocated bit-serial processors as
they do on a CM-5 with 32 allocated SPARC pro-
cessors. All of the timings reported in this paper refer
to the CM-5 implementation.

During program execution, each VP can be active
or inactive, depending upon the state of its local data
or upon directives it receives from the controlling
processor (the front end). If a VP is active, it executes
the current instruction. If not, the instruction is
ignored and the VP remains idle until the broadcast
of the next instruction.

C

V¢l

Figure 1. Marks, Dozier, and Frew (1984) procedure for determining basin membership. Arrows specify

cell drainage direction. In A, pit cell searches for surrounding cells that drain toward itself. In B, pit

determines that cells 2-6 are members of its own basin. In C, cells 2-6 continue recursive search for

neighbors. Cell 4 determines that cells 7 and 8 drain toward itself, thus belonging to same basin. Cell in
the upper-right corner drains to pit of neighboring basin.

Data-parallel procedures for drainage basin analysis

Ist recursive level
2nd recursive level

3rd recursive level

Figure 2. Worst-case performance for Marks, Dozier, and

Frew (1984) procedure. In basin that curves monotonically

upward in all directions from pit, number of cells actively

searching for members increases by 8 on each level of
recursion.

Two VPs can exchange data by passing a message
over an interprocessor communication network. The
time required to do this generally depends upon the
number of paths that the message traverses between
the two VPs. The CM-5 employs both grid and
general communication networks. If the VPs are
adjacent neighbors along a row, column, or diagonal

Virtual processor

0,0 |0,1
(26) (28)

Physical processor

0,2(110,3
(31) (32)

1,0
(30)

151
@1)

1,2
(33)

1,8
(34)

2,0
(33)

21
(35)

2,2
(36)

2,3
37

C D

3,1
(36)

3,0 3,2 i 3,3
(34) @7 | | @8

Figure 3. Mapping of VPs to PPs. In this example, 4 VPs
(identified by their comma-separated row and column ad-
dresses) are mapped to each PP, identified by letters A-D,
giving ratio VP/PP = 4. Elevation assigned to each VP is
represented by number within parentheses.

1367

in a simple grid, a message passed along the grid
network requires one unit of time to travel between
them. If the VPs are not adjacent, the message must
travel throughout the CM-5 general communication
network, a hypercube of dimension 12. On a hyper-
cube of dimension », messages may traverse a maxi-
mum of # steps from the source VP to the destination,
requiring nt units of time, where ¢ represents the
average time required for a message to traverse a link
in the hypercube. It is desirable, therefore, to pass
messages over the grid network whenever possible.
The data-paralle]l procedures described here use
grid communication procedures for most of their
message-passing operations.

A DATA-PARALLEL PROCEDURE FOR DRAINAGE
BASIN BOUNDARY DELINEATION AND DRAINAGE
FLOW ACCUMULATION MODELING

To delineate drainage basin boundaries and locate
stream channels, the data-parallel procedure per-
forms the following tasks in order:

(1) assignment of DEM elevation grid cells to VPs;

(2) removal of most false pits through elevation
smoothing;

(3) calculation of drainage direction per grid cell;

(4) assignment of drainage basin membership to
grid cells;

(5) removal of remaining false pits through a local
flooding procedure;

(6) delineation of larger basin boundaries through
the accumulation of smaller basins;

(7) location of stream channels through drainage
flow accumulation; and

(8) calculation of hill shading values for the user
window.

In Step 1, the front-end processor opens a USGS
1:24,000 series DEM and extracts grid cell elevations
that fall within a user-supplied window, specified in
DMS latitude and longitude values (Fig. 4). Each grid
cell is mapped to a unique virtual processor in a 2-D
shape, so that contiguity among adjacent grid cells is
maintained among their corresponding VPs.

Step 2 applies the O’Callaghan and Mark (1984)
smoothing operator to the elevation grid in a first
attempt to remove false pits that arise through grid
resampling procedures. To compute its smoothed
elevation value, each interior cell locates and com-
bines the elevations of its 8-adjacent neighbors with
its own [Eq. (1), Fig. 5]:

z;;={z;,; % 0.25)
(Gt 2oy 20+ 20 ,) x 0.125)
H@ir et 21t 2o 2 Lj-1)
% 0.0625). 1

Cells on the edge of the matrix contribute values to
the smoothing computations of interior cells but do

1368

User window

/ ? }:E; in window

.

Cell outside

window —4-"‘""_-—-
Figure 4. Extracting grid cell elevations for USGS 1:24,000
series DEM. User window, specified in latitude and longi-
tude coordinates, defines clipping region for extracting
elevations along profiles, aligned with UTM grid. Grid cells

within user window are mapped to unique VPs,

Profile
N

not compute their own smoothed values. The user
specifies the number of times to perform the
smoothing operator on the matrix—about 10
iterations removes as many pits as can be removed
by this technique. Because cells reference only
the elevations of their adjacent neighbors, all of
these references can be resolved through grid
communication operations.

Step 3 determines the drainage direction of each
grid cell by locating the steepest of the 8 paths from
the cell to its adjacent neighbors. Slope is determined
simply by dividing the elevation difference between
the cell and its neighbor by their distance: 1 if the
neighbor shares the same row or column; \/2 if they
are adjacent along a diagonal. Cells that do not have
downhill neighbors are flagged as pits. In keeping
with usual practice, interior pits are considered to be
grid sampling artifacts and are removed in Step 5
through a local flooding procedure. Pits on the edge

A -
i+1 |.0625| .125 |.0625
| i |.125| 25 | .125
i
i-1 |.0625| .125 |.0625
I Y B |
>

Figure 5. Weight matrix for smoothing operator in
Equation (1).

J. E. MOWER

of the elevation matrix are assumed to drain to
adjacent DEMs.

Step 4 implements an iterative search for grid cells
that drain toward each pit. Two approaches were
compared to highlight important efficiency issues in
parallel computing. The first approach is a straight-
forward, but somewhat naive implementation of the
Marks, Dozier, and Frew (1984) sequential algorithm
in parallel. Under this approach, searching begins by
activating the cells associated with pits (Fig. 6). On
every iteration, each active cell queries the drainage

Pit”

Figure 6. First approach to searching in parallel for
drainage basin members. Shading indicates active cells;
arrows indicate drainage direction. Basin label of pit (rep-
resented here as 2 in upper-right corner of cell) is initialized
to combined value of its row and column indices. On first
iteration, pit searches its adjacent neighbors for cells that
drain toward itself (A), and copies its basin label to those
that do. On second iteration, cells that drain into pit are
activated and continue search, copying their basin labels to
their uphill neighbors (B). On third iteration, cells discov-
ered as members on second iteration now are active and
continue search (C). Procedure will end when both active
cells fail to locate uphill neighbors.

Data-parallel procedures for drainage basin analysis

A B

1369

C

Figure 7. Second approach to searching in parallel for drainage basin members. All cells are active on

each iteration. Pits are initialized with basin labels as in Figure 6; labels of all other cells are initialized

to 0. On first iteration, each cell compares its label to that of its downhill neighbor, pointed to by its

drainage direction (A). If label of downhill neighbor is nonzero, cell copies downhill label to itself. On

second iteration, all cells remain active. On this iteration, the upper-left and upper-center dells are only

remaining cells with 0 labels that locates downhill neighbors with nonzero labels (B). At end of third
iteration, no cells with 0 labels remain and procedure stops (C).

direction of its 8-adjacent neighbors. Any cells that
drain toward itself are in the basin and are activated.
The cell that initiated the search copies its basin label
(a hashed value of the row and column address of the
pit) to the new members and then deactivates itself.
The procedure iterates, spreading this pattern of
activation across the processor array until all cells
have been assigned to a drainage basin.

Two characteristics of the first approach are likely
to slow the execution of a SIMD implementation: (1)
each active cell must query all of its neighbors for
their drainage directions although most cells will
locate only one or two uphill neighbors; and (2) a new
processor context must be determined on each iter-
ation. This is an expensive operation on the CM-5.

Under the first approach, cells on the edge of an
expanding basin “‘push” their labels uphill on each
iteration. The second approach recasts the problem
by having cells “pull” their labels up from their
downhill neighbors (Fig. 7). In this approach, pits
initialize their basin labels using the same procedure
as the first approach. All other cells in the interior of
the matrix initialize their basin labels to zero. On each
iteration, every cell compares the basin label of its
downhill neighbor (pointed to by its drainage direc-
tion) with its current basin label using a bitwise OR
operator. If a cell determines that the basin label of
its downhill neighbor is zero, the basin label of the
cell does not change; otherwise, it takes on the label
of the downhill cell. Nonzero labels propagate uphill
by one cell on each iteration until all cells have
nonzero labels.

The second approach has two important advan-
tages over the first: (1) all cells (excluding pits) have
one and only one downhill neighbor, reducing the
number of neighbor queries by a factor of 8 over the
first approach; and (2) the second approach keeps all
cells active over the duration of the search, eliminat-
ing the need to set the processor context on each
iteration. Although the second approach requires the

same number of iterations to complete as the first
approach, each iteration should take less time to
execute.

The shape, as well as the size of the drainage basin
determines the number of iterations required to com-
plete Step 4. In a square basin with a central pit (such
as the one depicted in Fig. 2), the expected number
of iterations is proportional to W/2, where W is the
width of the basin in grid cells. Figure 8 shows that
a narrow basin having a small number of VPs active

Ve|e[e|e] >
V¢l ¢

ar444L,

A"ar" 474K\
T | €| | &[4

N o
P~
oo
Nlo

JE|elelela @

- N w s
4044

rarar;
Mrarar:
3|e|e|e
- N W

4 3 2 1

Figure 8. Sensitivity of SIMD drainage basin procedure to

basin shape. Assuming drainage pattern in A, pit P1 will

require 9 iterations to locate its members; pit P2 will require
only 4 (B).

1370

over each iteration may require a larger number of
iterations to label than would a larger but more
compact basin with many active VPs.

Using a procedure recommended by O’Callaghan
and Mark (1984) to remove interior pits, Step 5 raises
the elevation of each pit until it drains to a lower
basin (Fig. 9). To do so, the pour point on the basin
boundary first must be determined. Each cell within
a single basin compares its basin label i0 its neigh-
bor’s. If the labels differ, then the cell is on the
drainage basin boundary and is activated. Each active
cell compares its elevation to the minimum boundary
elevation determined by a scanning function. If its
elevation is higher than the minimum or if the
neighboring basin has a higher pit than its own, the
cell deactivates itself. If more than one cell shares the
minimum value, all cells but the one closest to the pit
of the lower basin are arbitrarily deactivated. The
procedure notes the position of the remaining active
cell (the pour point) by copying its hashed row and
column address to the other cells in the basin.

All cells in the basin with elevations below the pour
point are reset to the pour point’s elevation and their
drainage directions are reset to an undefined value.
The drainage directions of the “flooded” cells are
then reoriented to the pour point using an iterative
procedure. Each pour point tests the drainage direc-
tions of its 8 adjacent neighbors. Neighbors having
the same basin label as the pour point and having an
undefined drainage direction are reset to drain
toward the pour point. These cells are activated

A
Pour Point
Pit
B
Iglﬁvrfvace Pour Point

Figure 9. Procedure for removing interior pits by flooding:
A, interior pit and its pour point (lowest point on basin’s
boundary with lower basin); B, elevations of all cells below
pour point are made equal to pour point’s elevation.
Drainage directions of flooded cells are left undefined.

J. E. MOWER

subsequently on the next iteration and examine
their neighbors using the same criteria. The pro-
cedure stops if no cell has an undefined drainage
direction.

The drainage redirection procedure employs a
pattern of grid cell activation similar to that of the
first approach to Step 4. Step 5 cannot emulate the
second approach to Step 4 because no established
drainage direction exists for each cell. It is expected,
therefore, that Step 5 will incur the performance
penalties inherent to the first approach to Step 4.

At the end of Step 5, the pour point is set to drain
toward a neighboring cell such that the following
criteria are met:

(1) the pour point must drain outside of its own
basin;

(2) the exterior basin must have a pit lower than
the current basin’s pour point; and

(3) the pour point must drain to the lowest of its
neighboring cells in the exterior basin,

Once the drainage direction of a pour point is
established, it becomes a member of the basin into
which it drains. Step 6 changes its basin label and
those of its uphill neighbors to reflect this change.
Relabeling begins with the lowest basin containing a
redirected pour point and continues to the highest
such basin. For each basin in turn, the pour point first
acquires the basin label of its downhill neighbor. The
other cells in the drainage basin of the pour point
then are activated and copy the new basin label from
the pour point to themselves (Fig. 10). Because most
of the cells in the basin are not 8-adjacent neighbors
of the pour point, copying is done over the hypercube
network.

Step 7 locates stream channels through an iterative
procedure that counts the number of units of “water”
that drain through each cell (Fig. 11). All cells (except
pits) are initialized with one unit. Emulating the
second approach to Step 4, every nonpit cell sends all
of its units to its downhill neighbor, pointed to by its
drainage direction, on each iteration. The sending cell
also increments the uphill cell counter of its downhill
neighbor by the number of units that it sent. Process-
ing stops when only the pit cells have nonzero water
supplies, indicating that all of the water has drained
through the system. At this point, the value of the
uphill cell counter for each cell will equal the total
number of units that have drained through it. The
uphill cell values for all cells then are normalized to
the range 0.0-1.0 and compared to the user’s toler-
ance value, specified within the same range. A cell is
considered to represent a stream channel if the nor-
malized value of its uphill cell counter is greater than
the user-specified threshold.

Step 8 computes a hill shaded image of the cells
within the user window using an algorithm presented
by Horn (1981). A cell calculates its slope and aspect
solely with respect to its own elevation and those of
its 8-adjacent neighbors. Then it compares its slope

Data-parallel procedures for drainage basin analysis

Cell in basin Drainage direction

of low pit of pour point

Cell in basin FP Flooded pit

of flooded pit oodec pl
PP Pour point of

flooded pit

Cell in basin
of low pit

Figure 10. Merging drainage basins through pour points: A,

pour point (PP) of basin of flooded pit acquires label of its

downhill neighbor in basin of lower pit; B, new label of PP
has been copied to all cells in its former basin.

and aspect to the azimuth and elevation of the
illumination source (specified by the user) to calculate
the illumination value for the cell (varying within the
range 0-255). All of the cells (except those on the edge
of the matrix) are active during the entire procedure,
maintaining a high level of efficiency throughout its

1371

execution. The illumination values can be applied
directly to create a hill-shaded map or as a value
overlay to hues representing the basin delineation and
drainage flow accumulation image layers, selected
automatically by a map coloring subprocedure.

A

Uphill cell counter Water supply

Figure 11. Modeling drainge flow accumulation. All cells
(except pits) are active on each iteration and are initialized
with 1 unit of water and 0 uphill neighbors, On every
iteration, each nonpit cell sends its entire water supply to its
downbhill neighbor. Each cell (including the pit) then incre-
ments its uphill neighbor counter by its current water
supply. On first iteration, every cell but pit sends 1 unit to
its downhill neighbor (A). On second iteration, only center
and pit cells have nonzero water supplies and uphill neigh-
bor counters (B). Center cell drains its water supply to pit
and increments pit’s uphill cell counter by 2 (C). At begin-
ning of third iteration, pit is only remaining cell with water
and accumulation procedure ends. Any cell having normal-
ized uphill cell counter greater than user’s tolerance value is
considered to represent stream channel.

1372
IMPLEMENTATION DETAILS

The CM-5 is a product of Thinking Machines Inc.
The current implementations were run on a CM-5
configured with 32 physical processors at the North-
cast Parallel Architecture Center (NPAC) at Syracuse
University.

The procedures described in this paper were im-
plemented in the C* programming language, provid-
ing data-parallel extensions to ANSI C. ANSI C code
will compile, link, and run under the C* program-
ming environment without modification. The
language supports both grid and general (hypercube)
message-passing procedures through left-indexing, a
syntactical construction that references VPs in multi-
dimensional grids (from 1 to 31 dimensions) with
array indices written within square brackets to the left
of the processor array identifier and increasing in
dimension toward the right. For the 2-D grids em-
ployed in this project, the left-most index represents
the VP row address and the right-most represents the
column address.

Example 1 uses C* left-addressing notation to
implement the smoothing operator in Equation (1).
In this notation, a dot is an alias for the index of
a VP along the dimension referenced by the
enclosing brackets. In Example 1, each active VP
(represented by z on the left-hand side of the
assignment operator) combines its local z value with
those of its 8-adjacent neighbors (selected by adding
to subtracting 1 to its index along one or both grid
axes) and replaces the original local z value with the
result:

Example 1,
z=(z*025)+ [+ 1z +[=10z + [+ 11z
+[F = 1]2)*0.125) + (- + 1][1- + 1]z
+ 10— Tl + [— 1+ 1z
+[= 1][- — 1]2)*0.0625).

Front End | Instruction Stream

// g wher~
/I '\) A=
y A h Y

\1 -

Virtual
Processors

Local Memory
(before instruction)

-‘V

!

Figure 12. Execution of where instruction in C*. Front-end
processor broadcasts instruction stream, carrying where
instruction, to virtual processors (VP,). Each VP sets its
value of @ to 1 if its current value of a is 0. In this example,
processors VP, and VP, carry out instruction; VP, remains
idle until broadcast of next instruction from front-end.

ﬁ@ﬂ@‘

Local Memory
(after instruction)

J. E. MOWER

In C*, a “shape” specifies a set of processors that
share a common data structure. The where operator
changes the processor context within the shape based
on the state of each processor’s local (parallel) data.
where operates similar to a parallel version of an if
statement in standard C; code is executed on a VP if
the expression for the where operator evaluates to
true on its local data (Fig. 12).

The implementation generates performance stat-
istics and produces encapsulated PostScript output
files that represent the drainage basin boundaries,
stream channels, and hill-shaded imagery for the
window. The user can select to display any or all of
these graphic layers within a single encapsulated
PostScript image.

EFFICIENCY ISSUES

The computational efficiency of a data-parallel
program on a CM-5 can be evaluated by examining
the percentage of VPs that are active over its running
time. For the smoothing procedure of Step 2, the
drainage direction procedure of Step 3, and the
hill-shading procedure of Step 8, all but the edge VPs
are active at all times. In contrast, the first approach
to basin delineation in Step 4 and the drainage
redirection procedure of Step 5 have lower percent-
ages of active VPs over their running times. When
Step 4 begins, only pits are activated. Assuming a
DEM of 300 columns and 400 rows mapped to a 2-D
array of 120,000 VPs with 50 pits remaining after the
smoothing operation in Step 2, only 0.04% of all the
allocated VPs will be active at that time. Even if the
number of active VPs rises to 1000 during the pro-
cedure, the percentage of active VPs increases to only
0.8% of the total allocated VPs.

On the CM-5, computational power is concen-
trated in a small number (1024 or less) of high-per-
formance PPs. At any point during program
execution, the set of active VPs may be running on a
small number of PPs, leaving the others idle. If the
active VPs were redistributed across the PPs during
program execution, efficiency would be high until the
number of active VPs fell below the number of PPs,
For a small CM-5, such as the 32-node installation at
NPAC, efficiency would remain at 100% for all steps
in the preceding example (Fig. 13). Unfortunately,
the current operating system software on the CM-5
does not provide dynamic load-balancing procedures.
As a result, some of the physical processors are likely
to remain idle at times during the execution of the
SIMD implementation.

Each PP must cycle through its set of VPs sequen-
tially. It is expected, therefore, that the running time
of the entire implementation will increase linearly
with the ratio ¥P/PP. This was tested by running the
implementation for windows of increasing dimension
to determine the relationship between execution time
and the ratio of VP/PP.

Data-parallel procedures for drainage basin analysis 1373
A B
- B . Ny X —?ﬂ
0,0 |- -] 0,1 02 8--Ho3 0,0 171 0,1 0,2 03§
26) - . (28) 31 :‘j N EcN (26) 4 - | (28) (31 (32)
- a7 ‘—“ﬂ
o B A e B
i g L
108 B 1.1 1,2 § M ,3 2,0 2,1 2.2 2,3
ao .0 @n L an i-E a9 | (33 (35) (36) (37
w0] 24 o B O ¥] BN BN 1,2
a3 | 6n age |- 6m | G0 | - W G (33)
@ o L D A A o
; 3,1 3,2 ; 3,0 (-] 3.1 3,2 3.3
(34) (36) 3n (38) (34) . (36) a7 (38)

Figure 13. Balancing processing loads across PPs. Shaded VPs are active; unshaded VPs are inactive: A,

]

PPs C and D are idle, where A and B each support 4 active VPs; B, active and inactive VPs have been
redistributed evenly across PPs.

OPTIMIZATION DETAILS

The CM-5 is a relatively new computer and much
of its system software, including the C* compiler, is
under development. To gain acceptable performance
values for the SIMD implementation, it was necess-
ary to apply some optimization techniques that nor-

mally would be performed by a compiler. The
techniques that are described here reduced execution
times by about one-third for nonoptimized im-
plementations.

Under the current release of the C* compiler, the
object code produced from where instructions exe-
cutes slowly. Examples 2 and 3 compare the structure

Table 1. Elapsed time in CPU sec for all steps in SIMD and sequential implemen-
tations for 4 user windows; both SIMD approaches for Step 4 are included

Elapsed Time (CPU seconds)
Step 1km X 1km[2km X 2km]4km X 4km[8km X 8km

1) Assign DEM grid cells to VPs

SIMD 2 3 5 10

Sequential 2 3 5 10
2) Smooth elevations, 10 passes

SIMD 1 1 1 1

Sequential 1 1 2 8
3) Calculate drainage direction

SIMD 1 1 1

Sequential 1 1 1 3
4) Delineate basin boundaries

SIMD, Approach 1 3 15 62

SIMD, Approach 2 1 1 2

Sequential 1 1 2 6
5) Remove pits through flooding

SIMD 1 1 1 5

Sequential 1 1 2 5
6) Merge basins

SIMD 1 1 1 1

Sequential 1 1 1 6
7) Accumulate drainage flow

SIMD 1 1 1 2

Segquential 1 1 1 6
8) Calculate hill shading values

SIMD 1 1

Sequential 1 1 1
Total Sequential Time: 9 10 15 47
Total SIMD Time (with Step 4, 10 12 26 83
approach 1):
Total SIMD Time (with Step 4, 9 10 12 23
approach 2):

1374 J. E. MOWER

Table 2. Overall execution times for SIMD and sequential implementations for all
user windows; ratio VP/PP also is provided for each window, based upon 32
installed PPs in NPAC CM-5

Window Size (km by km)

1X1[2 X2|3X3[4X4 | 5X5 | 6X6 | 7X7 | 8X8
Rows 33 66(100 133 166 200 233 266
Columns 33 67| 100 133 167 200 233 267
VPs 1,089| 4,422({10,000| 17,689| 27,722| 40,000, 54,289 71,022
VP/PP 34.0| 138.2| 312.5| 552.8| 866.3| 1,250.0| 1,696.5 2,219.4
Total Time, 9 10 13 15 18 28 35 47
Sequential
Total Time, 10 12 16 26 35 44 54 83
Approach 1
Total Time, 9 10 11 12 15 15 17 23
Approach 2
Slope of Least Squares Linear Trend of {0.006 seconds increase per
Time vs. VP/PP (SIMD Approach 2) additional virtual processor

and result of a where instruction with those of a
simple Boolean test. Both examples perform the
same operations: for all processors having copies of where (2= =b){
aequal to b, set the copy of ato 0 and b to 1. Example a=0;

2 does this explicitly with the where operator; h=1:
Example 3 uses a Boolean test. In Example 3, the ’
comma-separated list of operations on the right-hand }

side of the logical AND will be performed only if the and

expression on the left-hand side evaluates to true. The
author has determined that this method produces
more efficient executable code than the first: (a==b)&&a=0,b=1).

Example 2,

Example 3,

SIMD (Approach 1)

Sequential

Time (CPU seconds)

SIMD (Approach 2)

0+ + t t t + t i
1X1 2 X2 3X3 4X4 5X5 6X6 TX7 8X8
User Window Size (in kilometers)

Figure 14. Performance curves for sequential and SIMD implementations. Two SIMD implementations
are identified by their approach to Step 4.

(Figure 15 opposite)

Figure 15. Screen photograph of PostScript image of Ft. Douglas DEM showing hill-shading, drainage

basin delineation, and predicted locations of stream channels for user window 10 km in easting x 12 km

in northing. North is at top of image. Basins are designated by varying hues, hill-shading by value. Pixels
on stream channels are dark blue. Scale of original PostScript image was 1:100,000.

Figure 15—-caption opposite.

1375

1376

It is important to allocate no more than the
number of VPs actually required to represent the cells
in the window. Even if a VP is inactive, the time
required to check its state of activation is significant
under the current release of the operating system.
Fortunately, processor shapes can be declared with
any number of elements along each dimension at
runtime, much as memory is allocated dynamically
with the malloc() family of procedures in standard C.
The current implementation allocates a 2-D array of
VPs at runtime based upon the size of the user’s
window.

RESULTS

The performance characteristics of the SIMD
implementation were measured and compared to
those of a sequential implementation built on the
same source code base. The author ported the
sequential implementation, written in ANSI C, di-
rectly from the C* implementation. Code fragments
that do not make explicit use of parallel operators in
C* (including all of the operations in Step 1) are
shared by both implementations. Code fragments in
the C* implementation that use parallel operators are
emulated with standard iterative or recursive
methods in the C implementation. The C implemen-
tation was compiled, linked, and run on a single
CM-5 processor as a C* program to ensure that
timing comparisons were not influenced by differ-
ences in the efficiencies of the compilers or of the
runtime environments.

Performance statistics were gathered for both
implementations for a series of 8 tests, based upon
square user windows on the USGS Ft. Douglas, Utah

B o
E Elevation
=T Smoothing
E (Step 2)
267
3 (7] Drainage
g51 Direction
E (Step 3)
© 4
-y B Hil
> . Shading
£s (Step 8)
-
@ 271
E
=

SIMD Seq

Figure 16. Performance statistics for SIMD and sequential
implementations of Steps 2, 3, and 8 for 8 x 8 km user
window.

J. E. MOWER

Drainage Basin Delineation
(Step 4)
§ 70
£ 60
2
E- 50 1
o 401
230
E 2}
2 10
E o R
-
SIMD SIMD Seq
1 2

Figure [7. Performance statistics for sequential implemen-
tation and two SIMD implementations (approaches | and
2) of Step 4 for 8 x 8 km, user window.

1:24,000 DEM, ranging from 1 x 1 kmto 8 x 8 km in
1-km intervals in eastings and northings. Because
working profiling procedures for the CM-5 were not
available when this paper was written, both
implementations generated their own performance
statistics through calls to system level, load-indepen-
dent timing calls. Although not as precise as profiling
data (the smallest reported interval is the CPU sec),
these statistics yet provide useful views of the
performance behavior of the implementations. The
window sizes, overall execution times, and detailed

Drainage Flow
Accumulation
(Step 7)

g 6

£s

3

E 4

a2

=3

-]

£ 2| mmm

-

21

g

=0
SIMD Seq

Figure 18. Performance statistics for SIMD and sequential
implementations of Step 7 for 8 x 8 km user window.

Data-parallel procedures for drainage basin analysis

1377

25 1 Least Squares Linear Trend
(.008 seconds per virtual processor)
8 km. X 8 km.
20 +
w
b=
c
S 15 +
]
=
ES 4 km. X 4 km.
3 10 +
g D/g/ Execution Time vs. Ratio of Virtual Processors
= 1 km. X1 km to Physical Processors,
SIMD Implementation (using second approach to Step 4)
5 e
0 : : : : !
0.00 500.00 1000.00 1500.00 2000.00

Ratio of Virtual Processors to Physical Processors

2500.00

Figure 19. Relationship between ratio ¥'P/PP and execution times for SIMD implementation, using
second approach to Step 4. Least-squares linear trend for 8 user windows increases at rate of
0.006 CPU sec for each additional VP supported by PP.

performance statistics by procedural step (and by
approach for Step 4) are summarized for selected
windows in Table 1. Overall execution times for all
user windows are included in Table 2 and summar-
ized in Figure 14. Timing calls returning 0 sec were
rounded upward to 1 sec in Table 1. The timings for
Step 1 are identical for both implementations because
they share the same source code.

Figure 15 shows the graphic output of the SIMD
implementation for a 10 x 12 km window on the Ft.
Douglas DEM with North at the top of the image.
Drainage basins are represented by sets of contiguous
pixels with constant hue. Variations in the value of
each pixel represent the slope and aspect of its
corresponding local surface relative to a light source
illuminating the image from the northwest at an
elevation of 45 . Pixels representing stream channels
are dark blue. For all user windows, the graphic
output of the sequential implementation is identical
to that of the SIMD implementation.

As expected, steps that kept all of the interior VPs
active for their duration (Steps 2, 3, and 8) had the
lowest execution times for the SIMD implementation
(Fig. 16). The granularity of the system timer was
unable to capture execution times of < I sec, making
it seem that the three SIMD steps required the same
amount of time (rounded from 0 to | CPU sec for
Table 1) to complete for all four windows. With
regard to the rounded times in Table 1, the SIMD
implementation of Step 2 seemed to attain the largest
speed-up, executing 8 times faster than the sequential
implementation for 10 smoothing passes on the

8 x 8 km window. It is likely, however, that all three
steps attained speed-ups that were better than those
suggested by the worst-case values reported in
Table 1 for the SIMD implementation.

Figure 17 presents the execution times for the
sequential implementation and the two SIMD
implementations (approaches 1 and 2) of Step 4
running on the 8 x 8 km window. The implemen-
tation of the first SIMD approach to Step 4 takes
over 10 times longer to complete than its sequential
counterpart and about 30 times longer than the
second approach. Clearly, by imitating the sequential
procedure, the first SIMD approach performs an
unnecessarily large number of interprocessor com-
munication and context setting operations. Rewritten
from the ground up as a SIMD procedure, the second
SIMD approach attains a speed-up factor of 3 over
the sequential approach. Using a similar execution
strategy, the SIMD implementation of Step 7
achieved a speed-up factor of 3 over the sequential
implementation (Fig. 18).

As expected, the SIMD implementation of Step 5,
modeled on the first approach to Step 4, performed
poorly, offering no speed-up over the sequential
implementation for all but the 4 x 4 km user window.
Step 5 required less time to complete than the first
approach to Step 4 only because it operated on fewer
cells in each basin (those that were below the pour
point).

The SIMD implementation of Step 6, on the other
hand, performed 6 times faster than the sequential
implementation on the 8 x 8km window, even

1378

though it processed only one basin on each iteration
and utilized the hypercube network for message-pass-
ing operations. It achieved its speed-up by limiting
each VP to receiving no more than one message
during the entire step. This result further emphasizes
the importance of minimizing interprocessor com-
munication requirements in the design of SIMD
procedures.

Table 2 and Figure 19 show that execution
times for the entire SIMD implementation (using
the second approach to Step 4) increased linearly
at an overall rate of 0.006 CPUsec for each
additional VP supported by a PP. With
increasing numbers of PPs, the implementation
should experience corresponding decreases in
execution times.

DISCUSSION AND CONCLUSION

The parallel procedures for drainage basin analysis
introduced here exhibit three important character-
istics:

(1) SIMD implementations of the steps that oper-
ate locally on grid cells (Steps 2, 3, and 8) have the
lowest execution times;

(2) SIMD implementations of the steps that prop-
agate values across the VP array (Steps 6, 7, and the
second approach to Step 4) have low execution times
compared to their sequential counterparts; and

(3) execution times for the SIMD implementation
(using the second approach to Step 4) increase lin-
early with the ratio of VP/PP.

To decrease execution times for these procedures
further, it is necessary to increase the efficiency of
Steps 4, 5, and 7. Each of these steps requires that
values propagate away from a starting location in an
iterative manner, limiting the number of contributing
VPs on any iteration to a small percentage of the total
set. Each step also allows imbalances to occur in the
processing load carried by the PPs.

To distribute the load more evenly across the
physical processors, the entire collection of pro-
cedures could be recast for a MIMD environment.
Under this approach, drainage basins would be as-
signed to PPs as they became available. All of the PPs
would run concurrent copies of the sequential im-
plementation on their basins, requesting new basins
upon their completion. Processors would remain busy
until no unprocessed basins remained. At that point,

J. E. MOWER

processors would complete their final basins asyn-
chronously and become inactive one by one. The
overall efficiency of the MIMD procedures would
increase with the ratio of drainage basins to PPs,
thereby increasing the proportion of the time that the
program executes on the full set of PPs.

The author currently is developing a MIMD im-
plementation for the CM-5 and will compare its
execution characteristics to those of the SIMD pro-
cedures described here. It is hoped that through the
continued refinement of these and other parallel
procedures for applications in cartography and GISs,
along with improvements in parallel hardware and
software environments, that parallel computers
will become increasingly important platforms for
development in these fields.

Acknowledgment—This work was conducted using the com-
putational resources of the Northeast Parallel Architectures
Center (NPAC) at Syracuse University, New York.

REFERENCES

Ding, Y., Densham, P. J., and Armstrong, M. P., 1992,
Parallel processing for network analysis: decomposing
shortest path algorithms for MIMD computers, in Proc.
5th Intern. Symp. Spatial Data Handling, Charleston,
North Carolina, p. 682-691.

Franklin, W. R., Narayanaswami, C., Kankanhalli, M.,
Sun, D., Zhou, M., and Wu, P, YF., 1989, Uniform
grids: a technique for intersection detection on serial
and parallel machines: Proc. Autocarto 9, Baltimore,
Maryland, p. 100-109.

Hopkins, S., Healey, R. G., and Waugh, T. C., 1992,
Algorithm scalability for line intersection detection in
parallel polygon overlay, in Proc. 5th Intern. Symp.
Spatial Data Handling, Charleston, North Carolina,
p.210-218.

Horn, B. K. P, 1981, Hill shading and the reflectance map:
Proc. 1IEEE, v. 69, no. 1, p. 14-47.

Marks, D., Dozier, J., and Frew, J., 1984, Automated basin
delineation from digital elevation data: Geo-Processing,
v.2, no. 3, p.299-311.

Mills, K., Fox, G., and Heimbach, R., 1992, Implementing
an intervisibility analysis model on a parallel computing
system: Computers & Geosciences, v.18, no. 8§,
p. 1047-1054.

Mower, J., 1993, Automated feature and name placement
on parallel computers: Cartography and Geographic
Information Systems, v. 20, no. 2, p. 69-82,

Mower, J., 1994, Matching parallel algorithms and architec-
tures: the case of line simplification: in preparation.
O’Callaghan, J. F., and Mark, D. M., 1984, The extraction
of drainage networks from digital elevation data:
Computer Vision, Graphics, and Image Processing,

v. 28, no. 3, p. 323-344.

