Automated Feature and Name Placement
on Parallel Computers

James E. Mower

ABSTRACT. Implementations of general-purpose automated name-placement algorithms characteristically
require extensive amounts of serial computing time to select names from large databases and place them onto
small-scale maps. This paper presents a parallel algorithm for the automated selection of point features from a
scale-independent database, and their placement on maps at a continuous range of presentation scales. The
algorithm has been implemented and evaluated on a Connection Machine 2, a single-instruction-stream, mul-
tiple-data-stream computer. The execution performance evaluations presented here suggest that parallel com-
puting environments offer cartographers and geographic information systems specialists fast and flexible alternatives

to serial models of computation.

KEYWORDS: automated name placement, parallel computing, SIMD.

Introduction

ew aspects of cartographic production are more time-
consuming and less interesting to perform than la-

beling the map. Yet the automation of name place-
ment has proven difficult to implement successfully. To
function adequately, an automated name-placement sys-
tem must select names from scale-independent databases,
place them in a manner acceptably similar to that of a trained
cartographer, and do so quickly.

The cost of performing automated name placement is a
function of the constraints that cartographic production
systems are required to satisfy. Primarily, names must be
legible and they must not overlap other names or symbols
of the same color. Of equal importance to the map user is
that names refer unambiguously to their intended referent
symbol. A lesser but still important constraint is that la-
beling conform to cartographic or artistic conventions; area
labels should fill their areas; point-feature labels should align
with the major horizontal axis of their composition, and so
on (Imhof 1975; Robinson et al. 1984).

This paper presents a new name-placement procedure
that executes on the Connection Machine 2 (CM-2), a mas-
sively parallel computer developed by Thinking Machines
Inc. Parallel computers offer cartographers an exciting op-
portunity to execute computationally expensive procedures
in a small portion of the time required to execute them on
a fast workstation. Current high-performance workstations
execute approximately 50 to 100 million floating point op-
erations per second (MFLOPS). In comparison, current
models of the CM-2 operate at 4,000 MFLOPS when fully
configured with 65,536 processing units. Parallel computers
have been used for image-processing applications in re-

James E. Mower is an assistant professor in the Department of
Geography and Planning and codirector of the Laboratory for Geo-
graphic Information Systems and Remote Sensing at the State
University of New York at Albany, Albany, NY 12222.

mote sensing since the early 1970s, but have only recently
served as development platforms for work in cartography
and geographic information systems (GISs). Areas of active
research include the detection of line intersections in poly-
gon overlays (Franklin et al. 1989; Hopkins, Healey, and
Waugh 1992), and the generation of shortest paths through
networks (Ding, Densham, and Armstrong 1992).

The CM-2 was selected as a development platform for
this project because

1. The number of available processors is large enough to
allow each name or feature in the project database to
be assigned to a unique processor

2. Competition for map space can be managed through
the interconnection of conflicting processors

3. The project can be implemented in a parallel variant
of a common high-level computer language

Following an introduction to parallel computing hard-
ware, this paper presents a parallel procedure for the au-
tomated placement of point-feature labels and discusses its
implementation on a CM-2. The discussion is accompanied
by a presentation of execution performance statistics for the
implementation and a sample of its graphic output. The
paper concludes with a statement on the applicability of
parallel computing architectures for other aspects of auto-
mated cartographic production.

Approaches to Automated Name Placement

The procedures that cartographers apply to the labeling of
point features vary with the objectives of the mapping con-
text. In some contexts, a set of features is selected for place-
ment before labels are applied. In others, the cartographer
experiments with alternative selections of features and pat-
terns of label placement. Features are added or deleted dy-
namically as they compete with one another for map space.

A general-purpose, name-placement procedure must be
able to map arbitrary regions over a broad range of scales,

Cartography and Geographic Information Systems, Vol. 20, No. 2, 1993, pp. 69-82



extract features in the region and rank their importance,
and resolve competitions for map space in favor of features
of greater importance. At smaller map scales, insufficient
space will exist to place all features and their labels in an
acceptable manner. Ultimately, conflict resolution must end
with the deletion of the least important features in crowded
regions.

Since 1980, numerous articles on the design of automated
name-placement procedures have appeared in cartographic
journals and conference proceedings. Systems have been
described that select and label point, line, and area features
over a broad range of scales. Some of these designs have
been directed toward the automation of name placement
in production cartography environments, others toward its
automation in a variety of end-user applications.

Zoraster (1991) categorized these procedures as either
heuristic or optimization approaches. Heuristic approaches
apply assumptions about the availability of map space dur-
ing label placement and are capable of recovering, or back-
tracking, from incorrect intermediate solutions (Hirsch 1982;
Doerschler and Freeman 1989; Ebinger and Goulette 1989;
Freeman and Ahn 1984; Langran and Poiker 1986; Mower
1989). Optimization approaches solve a label-placement
problem by formulating it as an integer programming prob-
lem. The goal of the integer programming problem is to
minimize an objective function subject to constraints that
prevent overlap between labels and between labels and fea-
ture symbols. The variables of the optimization problem
represent label-placement options for each feature. The
coefficients of the objective function are derived from rules
for good label placement (Cromley 1985, 1986; Zoraster 1986,
1990; Zoraster and Bayer 1987).

Of all the procedures developed under one or the other
approach, few have been implemented successfully in com-
mercial mapping systems. The most important factor lim-
iting the usefulness of automated name-placement systems,
especially for real-time end-user applications, has been the
excessive time required to complete labeling jobs on large
data sets. The reduction of execution times must become a
top priority for research in automated name-placement sys-
tems aimed at commercial or applied use.

All previous automated name-placement procedures have
been developed for serial computing platforms, upon which
a small number of processing units, controlled by a single
central processing unit (CPU), execute instructions and store
their results in random-access memory on silicon chips.
Hillis (1985) argues, however, that up to 97% of the total
silicon in a modern serial computer goes unused during
any particular CPU cycle. As the area of silicon devoted to
processing increases relative to the area devoted to mem-
ory, computational efficiency increases as well. Although
the individual processors in a parallel computer are often
less powerful than the CPU in a typical desktop microcom-
puter, current parallel computers with sufficiently large
numbers of small processors can perform more floating point
operations per second than any current serial computer.
Given equivalent advances in processor design for serial
and parallel architectures, future parallel computers will
maintain processing advantages over future serial com-
puters. Several manufacturers already employ standard mi-
crocomputer or workstation CPUs in parallel configurations.

70

MIMD and SIMD Architectures

Like the CPU in a conventional serial computer, the pro-
cessors within a parallel computer execute programs as a
stream of individual instructions. In a multiple-instruction,
multiple-data (MIMD) machine, each processor is capable
of receiving a unique instruction stream, thus allowing each
processor to act as an autonomous computer (Figure 1). In
a single-instruction, multiple-data (SIMD) machine, all pro-
cessors listen to a single instruction stream broadcast from
a single controlling CPU, frequently known as a front-end
(Figure 2). Each processor becomes active or inactive by
executing or ignoring the current instruction as determined
by the state of its local data. The broadcast of a new in-
struction is delayed until every active processor has fin-
ished executing the previous instruction.

SIMD machines are useful for performing identical op-
erations on large numbers of data elements. Many such
tasks exist in cartography, remote sensing, and GISs (e.g.,
determining the direction of drainage for a cell in a digital
elevation model [DEM], applying a filter over a pixel array,
or detecting line intersections in a vector overlay proce-
dure). For each of these problems, a single processor can
be dedicated to a single problem element: an elevation, a
pixel, or a line segment.

MIMD machines are better choices for solving problems

IS 1 IS 2 IS 3

P 1 P2 P3

Figure 1. Multiple instruction streams in an MIMD computer.
Each processor P, receives a unique instruction stream IS,

Front End

!

Sequencer

P 1 P2 P3

Figure 2. The broadcast of instructions from a front-end computer

3
to a network of SIMD processors. All processors P receive an
i-1

identical instruction simultaneously.

Cartography and Geographic Information Systems



with multiple, independent components. The simulta-
neous computation of a hill-shaded image and a drainage
network for a grid cell DEM could be carried out on two
large processors without requiring the processors to share
the results of intermediate computations. When such re-
quirements occur, however, the programmer must syn-
chronize the processors to prevent the premature
computation of a dependent component. Good synchro-
nization in a MIMD program lowers the average amount
of idle time for machine processors, increasing the overall
efficiency of program execution. However, synchronization
is generally more difficult to achieve on MIMD machines
than on SIMD machines.

This project uses the CM-2, a SIMD computer, to imple-
ment a parallel procedure for automated name placement.
The procedure assumes the existence of a communication
network that allows the interconnection of any two pro-
cessors at any location within the network. As an intro-
duction to the computational requirements of the procedure,
the following section provides a brief discussion of the pro-
cessor and network architecture of the CM-2.

CM-2 Architecture

The CM-2 is a SIMD machine that can incorporate up to
64K processors. Unlike conventional desktop microproces-
sors that read or write 16 or 32 bits at a time, the CM-2
processors read or write only one bit at a time, making
them relatively inexpensive to produce (Trew and Wilson
1991). The programmer can direct the CM-2 to emulate a
larger parallel machine by establishing an array of virtual
processors. Virtual processors are obtained by subdividing
the available local memory for a given processor. With an
increase in the number of virtual processors comes a corre-
sponding decrease in the available memory for each.

Processors communicate with one another over multi-
dimensional grids or through hypercube routing. Grid
communication, though fast, is limited to message-passing
between nearest neighbors along an n-dimensional grid.
The hypercube router allows message-passing between any
two processors, regardless of their address. The flexibility
of hypercube routing comes at the expense of slower mes-
sage handling.

A SIMD Procedure for Automated Placement
of Point Features and Their Labels

The following SIMD procedure for the automated place-
ment of point features and their labels stresses the notion
of competition for map space through a one-to-one map-
ping of database features to processors. Processors, and
hence features, communicate their position and the posi-
tion of their labels to other processors via router links in
the CM-2. The use of the router assures the interconnection
of features with their neighbors, regardless of their relative
addresses.

Following a procedure for automated name placement
developed by Yoeli (1972), many recent name-placement
procedures limit the positioning of point-feature labels to
one of a small number of fixed, prioritized positions sur-
rounding their referent symbols (Figure 3). Wu and But-
tenfield (1991) report, however, that map publishers vary

Cartography and Geographic Information Systems

[N
W

/
®

8

Figure 3. Label suitability ranking for point features, after Yoeli
(1972). Lower numbers signify higher rankings.

in their preference for placing labels in one or more of these

positions.

The procedure below places a point-feature label in one
of eight possible locations surrounding a feature symbol
without referencing fixed positional weights. Instead, the
weights for the positions are made proportional to the
number and the associated importance of the point-feature
symbols that currently fall within the areas of the positions.
Positions with lower weights are preferred over positions
with higher weights.

Each top-level step in the procedure is labeled S or P to
indicate whether the step and its “children” are performed
as a serial operation on the front-end or as a parallel op-
eration on the CM-2. Generally, steps that require input
and output operations are performed on the front-end.

To place names on a map:

1 (S) Establish a geographic window onto the feature da-
tabase. Read the name, geographic coordinates, and
importance value for each feature. Place the label for
each feature to the upper right of its point symbol.

2 (P) For each feature, create a list of the current feature’s
neighbors.

3 (P) Until no additions, deletions, or label modifications
have been applied to the map, for each feature:

3.1) If the label of the current feature overlaps or
crowds the point symbol of any of its neighbors’
point symbols:

3.1.1) Move the label of the current feature
through the remaining positions in the
sequence until it can be placed without
interference.

3.1.2) If no position works, execute the follow-
ing deletion procedure (DL):

DL 1) Examine each remaining position
for features of lesser importance
than the current feature. Compute
a weight for each position based
on the importance of the features
having point symbols within the
position.

DL 2) If all remaining positions have fea-

71



tures of greater importance than the
current feature:
DL 2.1) Delete the current feature.
DL 3) Otherwise, place the label of the
current feature at the position
holding the least number of inter-
fering features (the lowest weight).
DL 4) If the current feature is overlapped
by the label of another feature:
DL 4.1) Delete the current feature.
3.2) While the label of the current feature overlaps
the label of a neighboring feature:

3.2.1) If the current feature is more important
than the neighboring feature;
3.2.1.1) Do nothing.

3.2.2) Otherwise, move the label of the current
feature to the next position in the se-
quence not occupied by a point-feature la-
bel. If there are no remaining positions in
the sequence, follow procedure DL.

3.2.3) Reset the label positions of neighbors of
deleted features to their lowest-weighted
positions.

4 (S) Create an output file containing the coordinates of
the remaining features and their labels.

Description of the Procedure

The procedure begins sequentially in step 1, carrying out
several data-processing operations on the front-end com-
puter. An input module prompts the user to specify the
minimum and maximum latitude and longitude of a region
for placement, and to select a map scale. It scans the data-
base for features within the region, comparing their posi-
tions against the user's window. For those features falling
within the region, the module reads their names and im-
pertance values (currently assumed to be the population of
a settlement), assigns the feature to a population class, sets
the height of the lettering to the height attribute of the
population class, and computes the length of its label as
the sum of the widths of its individual characters (given in
a font look-up table) scaled to the height of the lettering.
After transforming the feature’s position into rectangular
coordinates, the module computes the extent of the fea-
ture’s neighborhood, the area over which the feature can
compete for map space. The neighborhood is defined as
the minimum bounding rectangle (MBR) covering the eight
possible positions for the feature’s label (Figure 4). The

______ g s i ey sy
- Tt T T ""'"'l
' 6 @' §H |
_______ s s g
______ ¥ -

Figure 4. The neighborhood of a feature defined as the minimum
bounding rectangle (MBR) enclosing all possible label positions
for a feature.

72

module assigns the feature to the next available processor,
places its label to the upper right of its point symbol, stores
the feature’s attributes in the processor’s local memory, and
continues scanning the database for additional features
within the user’s region.

When the data-input module has finished scanning the
database, step 2 implements a parallel search for overlap-
ping neighborhoods. Each feature simultaneously com-
pares its neighborhood MBR with that of every other feature,
recording features as neighbors if their neighborhoods in-
tersect. The length of each feature’s neighbor list is scale-
dependent: At large map scales, few neighborhoods over-
lap; at very small scales, all neighborhoods overlap with
each other (Figures 5 and 6). When features search for label
overlaps, they need only consult with the features on their
neighbor lists.

Step 3 initiates an iterative search for label overlaps. Each
feature finds the MBR of its label at its current location and
searches the features on its neighbor list, checking the po-
sition of its label against neighboring point symbols for
overlaps. If a feature’s label overlaps a point symbol, the
feature attempts to move its label to the next of the eight
label positions in a clockwise direction from the current
position, ending with position 7 (step 3.1). If all the posi-
tions are occupied by other point symbols, it competes with
its neighbors for a space to place its labels (procedure DL).

Competition for space between two features is always
decided in favor of the feature with the greater importance.
For this project, the importance of a feature is equated with
its population. The feature searches each of its eight pos-
sible label positions for point symbols that belong to other
features. It computes a weight for each position as the sum
of the populations of other features claiming point-symbol
space within it. The greater the weight, the lower the pref-
erence the feature has for placing its label in that position.

B

C

Figure 5. Feature neighborhoods on a large-scale map. At this
scale, the rectangles representing the neighborhoods for features
A, B, and C do not intersect.

B

C

Figure 6. Feature neighborhoods on a small-scale map. The fea-
tures represented at a larger scale in Figure 5 now intersect one
another at a smaller scale. Each feature recognizes the other two
features as neighbors.

Cartography and Geographic Information Systems



If it finds that any of the features claiming point-symbol
space in a position have a population greater than itself, it
sets the weight to a maximum value, indicating that the
position is invalid for placing its label. After the feature has
completed its evaluation of the surrounding positions, it
places its label in the position having the smallest weight.
If all of the surrounding positions have been marked as
invalid, the feature deletes itself. Currently, the procedure
does not permit a deleted feature to be reconsidered for
placement even if the circumstances that caused its deletion
are removed in a later step. In some situations, this may
produce a sparser placement than could be achieved
manually.

Figure 7 portrays a sample feature, F, surrounded by its
neighbors a through i. F cannot place its label to the upper
right without overlapping point symbol ¢; therefore, it cal-
culates weights for each of its label positions to determine
the best alternate location for placing its label. Table 1 lists
the populations of F and its neighbors and Table 2 sum-
marizes the weights and rankings of each label position for
feature F based upon the populations and positions of its
neighbors. In this example, position 3 is ranked highest
because the sum of the populations for the point symbols
within its region is lower than that of any other position.
Position 1 is marked I (invalid) to note that feature F cannot
place its label over, and thereby delete, a feature of greater
population than itself (feature c).

F places its label in position 3, overlapping point symbol
i. All of the features, including F and its neighbors, then
compare the position of their point symbols with the po-
sition of their neighbors’ labels. Feature i finds that its point
symbol is overlapped by the label of feature F, indicating
that F is more important than i. Feature i subsequently
deletes itself from the map. In this example, feature e will
place its label over feature g, forcing its deletion as well
(Figure 8).

At the end of step 3.1, no label will overlap a point sym-
bol, but some labels may overlap other labels. Step 3.2 di-
rects each feature to compare the MBR of its label at its
current position with the MBRs of its neighbors’ labels at

[
§ 4 9
& oF S
o
oh i
S o

Figure 7. The spatial distribution of a sample set of point features
described in Table 2.

their current positions. If a feature finds that its label over-
laps a neighbor’s label, it compares its importance with that
of its neighbor. If the feature is more important than its
neighbor, it does nothing. If it is less important, it moves
its label to the next remaining position in its sorted list. If
the remaining positions in the sequence have been marked
as invalid, the feature deletes itself and its neighbors move
their labels back to their lowest-weighted positions in an
attempt to claim the vacated space. It is important to note
that a feature cannot return the position of its label to a
previously visited position unless one of its neighbors has
been deleted. This restriction prevents features in a neigh-
borhood from undergoing an endless cycle of label
adjustment.

Every time a label is moved or a feature is deleted, the
procedure notes that the map has changed and cycles
through another round of label adjustment. After com-
pleting a cycle in which no changes are made, the proce-
dure draws the map with the labels and point symbols at
their current locations.

Implementation Details

The data for this project were extracted from the U.S. Geo-
logical Survey (USGS) Geographic Names Information Sys-
tem (GNIS) national database for populated places (USGS
1987). Each record in the GNIS’s populated places file con-
tains, among many other attributes, fields for the alpha-
numeric name of a populated place, the location of its
centroid in degrees, minutes, and seconds of latitude and
longitude, and, for incorporated places, its population. These
fields were included in the project database for records fall-
ing within New York state with nonblank population fields.
Places were not extracted if they contained alternate name
fields. The resulting database contains approximately 5,500
features for New York state.

The current implementation of the procedure was writ-
ten in C* for execution on a CM-2 at the Northeast Parallel
Architecture Center at Syracuse University. The C* pro-
gramming language, an extension of ANSI C, is one of
several high-level programming languages implemented on
the CM-2 that include parallel operators for instruction flow
control, interprocessor communication, and the manipu-
lation of virtual processors. At the time that the current
implementation was being tested, 32K processors were in-
stalled on the CM-2, far more than were necessary to allow
the assignment of each feature to a unique physical
processor.

The procedure itself does not prescribe an appropriate
label density, but controls it through the adjustment of a

Table 1. Populations for the sample features represented in Figure 7.

b

a c d

Pop. 14,302 28,922 99,027 21,331

Cartography and Geographic Information Systems

e

34,587

Feature

i

16,692

g h i F

12,845 11,349 4326 98,402

73



Table 2. Rankings for the label positions of feature F in
Figure 7 based on the populations of its surrounding features.

Position = Total Population (Weight) Rank
1 99,027 I
2 43,224 6
3 4,326 i
4 12,845 2
5 16,692 4
6 55,918 7
7 28,922 5
8 15,675 3
a_1|b £
4
d 1 ob ©
¢ c oF J[f
o
oh
: F
h

Figure 8. The initial label placement of the point features in
Figure 7 after resolving label/point-symbol overlaps. Note the dele-
tion of point symbols g and 1.

variable width buffer surrounding each label. An increase
in the width of the buffer beyond 0 extends the MBR of
the label, effectively increasing the area over which its fea-
ture searches for overlapping labels or point-feature sym-
bols. Except for the map in Figure 17, maps created for this
project used a buffer width of 0. In accord with common
practice, labels mask underlying line work and avoid in-
tersecting the neat line. The size of a label and its referent
point symbol are determined by the membership of the
associated feature in one of five population classes, each
having a unique assigned label height.

The user begins the execution of the program on the
front-end computer by supplying the name of the feature
database, the geographic coordinates of the area to be la-
beled, the scale of the output map, and the name of the
graphic output file. Following the termination of the pro-
gram, the user downloads the graphic output file to a graphic
workstation.

To remain device-independent, the procedure does not
specify a particular graphic environment for map produc-
tion. The current implementation generates a PostScript

74

language program that specifies the layout of the map. The
implementation calculates label MBRs by referring to a
character-width look-up table for the label’s font. The cur-
rent look-up table contains information for the Helvetica
typeface on the Apple Laserwriter. Additional fonts can be
supported as their look-up tables are created. Numerous
PostScript interpreters have been used to display the maps
produced for this project including Newsprint from Sun
Microsystems Inc.; Ghostscript, an interactive PostScript
interpreter; and the PostScript interpreter within an Apple
Laserwriter, upon which the maps for this article were
produced.

Analysis of the Procedure

If the number of places in the feature database is less than
or equal to the number of processors, the running time of
the procedure will be dominated by label-overlap detection
and conflict resolution (step 3 of the procedure). Whenever
a feature moves its own label or whenever one of its neigh-
bors moves its label, the feature retrieves the positions of
each of its neighbors’ point symbols and labels and checks
the position of its label against them for overlap. Because
all SIMD processors receive the same instructions simul-
taneously, no processor can begin a new instruction until
every feature has checked all of the neighbors on its list.
The time that a feature requires to check all its neighbors
increases as a constant value multiplied by the length of
the list of its neighbors.

The average length of a neighborhood list is inversely
related to map scale, as shown by Figures 5 and 6. At a
sufficiently large scale, no neighborhood intersects any other
neighborhood. As scale decreases, more neighborhoods in-
tersect with one another until, at some sufficiently small
scale, all neighborhoods intersect. Without optimization,
the running time of the program is expected to increase
linearly with the length of the longest neighborhood list.
In practice, running time is reduced by removing references
to deleted neighbors from neighborhood lists at the end of
steps 3.1 and 3.2.

Whenever a label overlaps a point-feature symbol or
another label, the conflict is resolved in favor of the fea-
ture of greater importance. At large map scales, few
neighborhood intersections occur and most features are
able to position their labels on the map. As scale de-
creases and more neighborhood intersections occur, the
opportunities for the neighborhoods of features of lesser
importance to intersect with those of greater importance
increase. It is expected, then, that higher proportions of
less important features will appear on larger-scale maps
than on smaller-scale maps.

Benefits of Parallel Processing

SIMD computers provide a better platform for modeling
competition for map space than do serial platforms. The
parallel procedure does not require that features be ordered
for placement onto the map in a sequential manner. Mower
(1989) found that when features are applied to a map se-
quentially, features that are applied early in the sequence
are more likely to be deleted through competition for map
space than features applied late in the sequence. In that

Cartography and Geographic Information Systems



Table 3. Percentages of features selected from each decile for maps in Series 1.

Scale 1 2 3 4
Denominator

500,000 28.57 38.09 36.50 61.90
750,000 158 634 634 19.04
1,000,000 000 158 000 7.93
1,250,000 000 000 000 158
1,500,000 0.00 000 000 158
1,750,000 000 000 000 0.0
2,000,000 0.00 0.00 000 0.0
2,250,000 000 0.00 0.00 0.00
2,500,000 000 0.00 000 0.00
2,750,000 000 000 000 0.0
3,000,000 000 000 000 0.0
3,250,000 000 000 000 0.0
3,500,000 0.00 000 000 0.00
3,750,000 000 000 000 0.00
4,000,000 000 000 000 0.00
4,250,000 0.00 000 000 0.0
4,500,000 000 000 000 0.00
4,750,000 000 000 000 0.0
5,000,000 0.00 000 000 0.00

study, small-scale maps that were produced from a list of
features sorted by population often included a dispropor-
tionate selection of the most populous features and the
least populous features. Throughout the sequential proce-
dure, the most populous places would win space conflicts
with less populous places. In the latter stages of the pro-
cedure, places with low population values were easily placed
into the holes left by the removal of larger places. The par-
allel procedure considers all features simultaneously, thereby
eliminating order-related effects.

Cartography and Geographic Information Systems

5 6 7 8 9 10
58.73 7142 8253 8571 9523 9692
2222 30.15 5873 5396 74.60 90.76
1.58 9.52 2539 36.50 5396 84.61
000 158 634 19.04 38.09 69.23
000 317 158 634 1746 61.53
0.00 0.00 0.00 1.58 1111 50.76
0.00 0.00 0.00 1.58 476  43.07
000 000 000 158 3.17 33.84
0.00 000 000 0.00 1.58  29.23
000 000 000 0.00 1.58  23.07
000 0.00 000 000 1.58 18.46
000 000 000 000 0.00 13.84
000 000 000 000 0.00 1538
0.00 000 000 000 000 1230
000 000 000 000 0.00 7.69
000 0.00 000 000 000 769
000 000 000 000 000 7.69
000 000 000 000 000 6.15
0.00 000 000 000 000 461

Name placement, of course, is one of many cartographic
functions within a GIS and one that is rarely performed in
isolation. Before parallel computers can become common
platforms for the development and use of such systems, it
must be demonstrated that a large number of the proce-
dures that make up a GIS can be ported to parallel envi-
ronments with performance and modeling improvements
that justify their costs, currently on the order of $2 million
for the CM-2. It is reasonable to assume that the cost of
parallel computers will decrease as initial research and de-

75



Table 4. Percentages of features selected from each decile for maps in Series 2.

Scale Dim. 1 Z 3 4 S 6 7 8 9 10
Denom.  (°long
x °lat)

1,000,000 1x1 0.00 500 000 250 250 1500 1500 30.00 40.00 81.81

2,000,000 3x3 000 000 000 040 040 000 122 286 942 3849

3,000,000 5x5 000 000 0.00 020 000 000 020 041 452 17.82

4,000,000 7x5 000 000 000 0.00 000 000 072 000 108 1144
100 — T T T T T T 1 1:500 000 Not all geographic problems benefit by the application
,""-1 ’ : of SIMD models, however. Procedures that require exten-
20 - ) ¥ A sive information-sharing among grid cells, that operate on
80 s _ only a few cells at a time, or that operate on levels of to-
s pological structure greater than the pixel or grid cell may
70 Ea - 1:1,250,000 underutilize SIMD machines or incur large interprocessor
. I." i communication costs. Mower (1992) has found this to be
B 60 P i true for aspects of drainage-basin analysis from grid cell
(_(‘? 50 b / i DEMs and for applications of the Douglas simplification
o 7 ! 1:2 000.000 procedure (Douglas and Peucker 1973). Such procedures
¥ 40 — I R may find better expression under MIMD models if their
ke P | data can be decomposed into autonomous units, such as
30 VA B topological pits or line segments. In the first case, each
20 A = MIMD processor assigned to a unique pit computes its
Vi { 4 1:3,500,000 drainage basin boundary using standard sequential pro-
10 _,'/ ;‘f- 1:3,250,000 cedures. In the second case, each processor assigned to a
Vot e gl 1:9,000,000  Jine segment simultaneously applies a copy of the simpli-
0 4 56 7 8 9 10 fication procedure to it. Because neither case requires that
123 Dadls information be shared across unit boundaries, both should

Figure 9. Graph of the percentages of features in each decile that
were placed on selected maps from Series 1.

velopment costs are recovered and as production methods
and components become standardized.

Fortunately, many of the problems encountered in geo-
graphic processing find natural expressions in SIMD or
MIMD algorithms. SIMD computers have long been used
for processing remotely sensed imagery using a processor-
per-pixel model (Rohrbacher and Potter 1977). The author
has shown that this model allows the computation of hill-
shaded images for entire USGS 1:24,000 DEMs on a CM-2
in less than three seconds in real time (Mower 1992). In
this case, fast execution times are attained by minimizing
the number and complexity of interprocessor messages. Each
processor calculates a slope, aspect, and illumination value
for its pixel by acquiring only the elevations of its eight
connected neighbors over a two-dimensional grid-network
architecture. No message ever needs to travel more than
one step in each grid dimension to reach its destination.

76

attain reductions in execution times over sequential com-
: n . 5
puters proportional to —, where n is the problem size and

p is the number of available processors. The actual speed-
up may be less than the predicted value if some of the
processors are idle during program execution (Hansen 1990).
The author is currently developing MIMD versions of the
drainage-basin delineation problem and the Douglas line-
simplification algorithm to test the validity of these as-
sumptions for large data sets.

Testing the SIMD Name-Placement Procedure

To demonstrate the effectiveness of SIMD computers for
automated name placement, a series of maps was created
that establishes relationships among scale, execution time,
and the distribution of names on the maps by importance.
The series is composed of 19 maps of central New York
state, a region characterized by an even distribution of fea-
tures, bounded by 74° 45’ 0" W, 76° 0" 0" W, 43° 30’ 30" N,
and 42° 15’ 0" N (Series 1). The maps in the series vary in

Cartography and Geographic Information Systems



Table 5. Timing statistics for Series 1 map production. Rows
refer to individual maps in the series and include the map-
scale denominator, maximum number of neighbors found
for an individual feature at the start of processing, total
running time in front-end CPU seconds, percentage increase
in the maximum number of neighbors over the base scale
of 1:500,000, and percentage increase in running time over
the base scale of 1:500,000.

Scale Number of Running % Increase % Increase
Denominator Neighbors  Time Neighbors  Time over
(original) (CPU over 1:500,000
seconds) 1:500,000
500,000 20 137.40
750,000 36 161.95 80 17.87
1,000,000 55 155.54 175 13.20
1,250,000 78 159.28 290 1592
1,500,000 106 169.87 430 23.63
1,750,000 148 186.22 640 35.53
2,000,000 179 200.69 795 46.06
2,250,000 210 206.18 950 50.06
2,500,000 244 213.81 1120 55.61
2,750,000 283 231.33 1315 68.36
3,000,000 306 240.93 1430 75.35
3,250,000 327 249.28 1535 81.43
3,500,000 343 255.87 1615 86.22
3,750,000 360 260.99 1700 89.95
4,000,000 374 266.84 1770 94.21
4,250,000 390 27315 1850 99.24
4,500,000 405 279.76 1925 103.61
4,750,000 420 288.58 2000 110.03
5,000,000 437 295.06 2085 114.75

scale from 1:500,000 to 1:5,000,000 in scale-denominator in-
crements of 250,000. Table 3 summarizes the regions, scales,
decile percentages, and execution times for each map in
Series 1. For each map, the implementation classified the
features within the region into population deciles, and re-
corded the percentage of features in each decile that ap-
peared on the map. Load-independent execution times were
recorded by the UNIX procedure gprof. It was expected

Cartography and Geographic Information Systems

500 T T T T T T T T
450
400
350 |-
300 |
250
200
150 +
100 +

Maximum Number of Neighbors

(o)}
o
i

| 1 1 1 1 1 | 1

500 1000 150020002500 300035004000 45005000
Scale Denominator (X 1,000)

Figure 10. Graph of the relationship between the maximum num-
ber of neighbors for an individual processor and map scale for all
maps in Series 1.

300 T T T T T T T T

250 -

200 -

180 5

Execution Times (cpu seconds)

100 I 1 | 1 1 1 | 1
0 50 100 150 200 250 300 350 400 450
Maximum Number of Neighbors
Figure 11. Graph of the relationship between execution time and
the maximum number of neighbors for a processor for all maps in
Series 1.

that running time would increase at a rate less than the
increase of the length of the largest neighborhood list.

To demonstrate the capability of the program to make
scale-independent selections of features over regions of
varying dimensions, a second series of maps was pre-
pared (Series 2) that varies in scale from 1:4,000,000 to
1:1,000,000 in scale-denominator increments of 1,000,000
and in the dimensions of their mapped regions from 1
degree longitude by 1 degree latitude to 7 degrees lon-
gitude by 5 degrees latitude. Table 4 summarizes the re-
gions, scales, decile percentages, and execution times for
each map in Series 2.

Analysis of Series 1 Test Results

Table 3 lists the percentage of features selected for place-
ment at each scale for each map produced for Series 1.
Figure 9 portrays the relationship between map scale and
the number of features placed per decile for selected maps
in this series. As the number of features selected for place-
ment on each map decreases through scales of 1:500,000 to
1:5,000,000, the bulk of the reductions at each step are car-

77



Ma Seﬂelenao—ﬂhalaaugay ouses Faint
Ogdensburg alone ¢ Plattsburgh
= OP i Danne
otsgam
c:?;:t:]vameurSara a.cLake sesavilie }I paneensly
Plercel| ieldi La.ka Placl
Water_p no Cawan\Comar i & ©Morlah Center
4 Cathage Raquetie Lake Flaradas, JTiconderoga
Green Settlernent | guwille © & J
Oswego Pulssit, Page : owlersville Warrensburg "'/ grienal
T T Hapkingville Glens Falls
ockport - Rochester : ¥ PRV
O racuse ica™
le) .
@] Saratoga Springs
N N
Buffalo) Nies
ansv]ll Ke (*° 5] Ocoman SCheneCtady Q
Gowanda gao I H me[l (B?I_B;éﬁt Albany
o
Salamanca Bat ca Skiney © & /
o 5 o i Delhi Hudson
Olea Corning - y Kingston
Elmira Binghamtoh w2° g
g [tz ¢
_ e P Poughkeepsie
Middletow 3., —d
o} ewburgh
Fishers Island
Yonker Southok:‘ pnngs
0 .
@
New York ““Tevittown

Figure 12. Series 2, 1:4,000,000. Map covers 7° longitude, 5° latitude.

ried by the lower population deciles. At 1:500,000, the per-
centage of features selected for the map from each decile
increases monotonically from 28.57% of the features in de-
cile 1 to 96.92% of the features in decile 10. At 1:1,250,000,
no features remain from deciles 1, 2, 3, and 5; only 1.58%
of the features from decile 4 and 6 remain. Features selected
from deciles 7 through 10 now dominate the map, with
values of 6.34%, 19.04%, 38.09%, and 69.23%, respectively.
At 1:2,000,000, only deciles 8, 9, and 10 are represented by
1.58%, 4.76%, and 43.07%, respectively, of their original
members. At 1:3,250,000, no members from deciles 1 through
9 have been selected, but 13.84% of the features from decile
10 remain. As scale decreases to 1:5,000,000 (with the ex-
ception of 1:3,500,000), the number of features selected from
decile 10 remains the same or decreases with each step.
Clearly, the parallel procedure inhibits the selection of low-
population features on small-scale maps.

Without optimization, it was expected that the running
time of the program would increase linearly with the max-
imum number of neighbors for a feature. By collapsing the
lengths of neighbor lists to account for deleted features, the
actual running times were kept much lower than the pre-

78

dicted times. For each scale, Table 5 lists the running time
and the maximum number of neighbors for features as well
as the percentage increase in maximum neighbors and run-
ning time over the base scale of 1:500,000. Figure 10 shows
the relationship between map scale and the maximum
number of neighbors for map features. Figure 11 shows the
relationship between the maximum number of neighbors
and running time. From 1:500,000 to 1:3,000,000, the max-
imum number of neighbors for a feature increased by 1,430%
(from 20 to 306), while running time increased only by 75.35%
(from 137.40 to 240.93 CPU seconds). From 1:3,000,000 to
1:5,000,000, the maximum number of neighbors for a fea-
ture increased by 42.81% (from 306 to 437), while running
time increased by 22.47% (from 240.93 to 295.06 CPU
seconds).

To make a rough comparison of the execution times for
the parallel implementation and a functionally equivalent
serial procedure implemented on a Sun SPARCStation 2,
the author ran the 1:3,000,000 Series 1 map on the SPARC-
Station. The SPARCStation completed the map in one hour
and 25 minutes. The CM-2 completed the map in four min-
utes and one second.

Cartography and Geographic Information Systems



Ogdensburg

otglas Crossing®

Gouvernsur
o

VG’{_ ; © Wanakena—Tafawus o oriah Canter
atg) wn © Cowan Carner
O 'j Deetland Paradox o ropville
Green Setjlgment Carthage KBopawa aradox, .0 {r
9 \ o Faquette Lake iconderoga
owvile®  ©gpamyvills . ;
peryvile i Christian Hi
Dﬁo\qf]eill rsville © Johnsbur, itehall
conylile
Warrensburg? Granville
Higgins Ba, ]
9 y° welis Glens Falls
tica Saratoga Springs
'S Q
Olllon

O
Schenectady
Albany
SCoxsackig
HOH‘T“ " oHors eads Delhi Catakil Hudson
Corning o o} Arkvills augertiés
Shc?lgo Elmira inghamton Beaverkil  WWest Hurley;)
i AKingston
East Cochecton Liberty® Poughkeepsie
o Mon%callo '®
Midlgtow o Newburgh
Port Jarvis
New City° hite Plains

Massg, ag"sa Chatedugay uses Point
slana o
R Malone Plattsbyrg
[o) High Ban '
Canton® Potsda
Ralnbow Lake i
TR % oesaville

; :
! Lbom Poir
ar

Underclift
] OR

SaranacLake | © X
Lake Placid ©

adhams

d achanicvilie

Argsterdam ©

Yonker s
o)
New Y”eviffow’ e

Figure 13. Series 2, 1:3,000,000. Map covers 5° longitude, 5° latitude.

Analysis of Series 2 Test Results

The maps in Series 2 (Figures 12, 13, 14, and 15) represent
a zoom from 1:4,000,000 to 1:1,000,000 centered roughly on
Oneonta, New York. As scale increases and the field of
view decreases, the percentages of features selected from
each population decile increase steadily (excepting decile 7
from 1:4,000,000 to 1:3,000,000), as they did for increases
in scale alone for the maps in Series 1 (Table 4, Figure 16).

As scale decreases from 1:1,000,000 to 1:4,000,000, few
places of low population remain on the map, especially

Cartography and Geographic Information Systems

near large urban centers. In more remote areas, where places
of low population generally compete with one another for
placement, some of these places inevitably survive. Whether
this is to be considered a bug or a feature of the procedure
is best resolved with respect to the goal of the map. If the
user wishes to fit as many places as possible onto the map,
then their placement is appropriate. If not, then it is ap-
propriate to change the measure of importance from pop-
ulation to some other index or to restrict the placement of
features to those having a specific attribute. Neither of these

79



Enducino o
mithbor i

Pgﬁtﬁ o /—r O jndian Rlver Kespawn o New ;mbc>
fp ﬁq@\ar&em tertown Lile Repigs  Deerland
ak
p— o Petries Comers o Flaauette Lake
Taylor Settlement® OW v © oS :
Montarlo Paln Page o;:nft!]’r :am inlet | Korwals Christian Hill
e o Bakers Mills
Fowlersville
Mohawk Hill arkimer Landing \
2 oonvil o o Grffin
(b|9b0n:l° ° -
Higgins Bay walils
Calox Gofner haker Place®  Tenantvill 4
o BhecwBay % Rome nappvmeﬂ_){\ zf’
Rice \
H Edinburg
Baldwinsvile® o tica
F |rmounto\5O Cilntan Gloversville |
Auburn o iy Hotklmax
Johnst
o] SyraCUSGSman f.‘.omars o Qaneiown
o, Kingdom
ﬁ HamitorE351 wirioR~ 1°°2_Amsterdam
Elmwi ecklown  Taylortown
;3 & iddleportd  ©  © e g
noa Wilson C Carhsl
o pnCormats South Edmestan Bosparsitm & pile
?rsarCcrnersQ——G,don_J o & Co) $esk|II Woot &
Plymouth larvill 66l Berne
Osgood Landin o Cortland ph e Mal')"lando .
Norwich Oneonta tts Corner
Kennedy Corner” - o ol Nrton Hil—
orbln Corner
Watkir?s Glen ltha i Rockdale' pa o North Befilemant.
Lower Genagantsla! Cornar Sy Merldale
o
Ketchumville " Arabia Delhi Nonh Lexington®

O Newmans Corner

Kerry Siding
ing hamton e° Beaverk West Hurley_
o
\F t Shokan o)
Parkston® Hurley
Liberty
k3 New Paltz
o
East Cochact Ellenville®
= o © Monticello
/Newburgh
dletown
@]
2 Goshen
Port Jervis © Monros
o
Warwi
Pearl River

Waltor? ©  New Kingston
Colchester aille

e
e Moprialn,,

Figure 14. Series 2, 1:2,000,000. Map covers 3° longitude, 3° latitude.

changes would affect the overall performance of the
procedure.

Because it refrains from forcing the placement of labels
into some preferred slot, the procedure generally creates a
balanced areal distribution of labels on each map. How-
ever, features that appear near the neat line are constrained
from placing their labels in those positions that intersect
the neat line. As a result, such places have fewer labeling
options than other features within the region, and are sub-
sequently less likely to appear on the map. Figure 12 in-
cludes Lockport but not Niagara Falls, although the latter
city has a higher population. Unfortunately, the label for
Niagara Falls can only fit in three positions: to the upper
right of its point symbol, directly to the right, or to the
lower right. Each of these positions interfere with the label

80

or point symbol for Rochester, which has a higher popu-
lation than Niagara Falls.

As the number of labeled features increases over a unit
area, the likelihood that a map user will associate a given
label with the incorrect point feature increases. By increas-
ing the size of each feature’s neighborhood, the program-
mer extends the search for overlaps beyond the edge of the
feature’s label. With extended neighborhoods, a feature will
note that an overlap has occurred even when its label is
merely “close” to another feature’s label or point symbol.
It will choose another location for its label or force the “ov
erlapped” label to move. Unfortunately, an increase in the
size of feature neighborhoods usually results in a decrease
in the number of selected features.

To force the implementation to place the maximum num-

Cartography and Geographic Information Systems



o o
OWalafvaJe S Mun‘

Cazenovia
l\:‘h‘.vrrisvlllao Opratis Holl

o
Small Corners Cedar LaLBo

(+]

o

Cedarville
o
Perkifs Comer vile_ Morrsville St ast W'n{eld\
o
& 9 Hamilion Guidagoard Dogtown
— KO8Ny " ghads o
Middiepor® \toscom Hill o
rooks Corn Pecktown
Lin laeg Center ©Bonney Columbus Quanero o Edmeston
South Edmestol o
Ners Barlia Amblers Crcssing
o Tavior Valley © Plymouth Jones Crossing
South Plymouth® ©Chenango Lake o
° Preston Norwich oA rville Mount Vislon
incinnatus e 2 Ol
Woest Laurens  Laurens
e . Polkville West Oneonta
rman FpUr COMSIE  corbin CorneRockwell Mil e
o E‘_r
Penelope " i Oneonta
Smithville Center Uit et Nl Errimd

Trlanglao 5 Genegantslelves Settlement ockdala o -
eonta
o Lower Genegantslet C:ornar‘:‘“drle RSk ©  Arabia
o o
Blackesley Corner Youngs
North Colesville, J Mundale,
© ©Tacoma
Newmans Comer lvanhoe
e o Walton
9 Center Village Cleaver °©
Chin, o
e} oStlesvile, o g
3 Rock Rift
Blnghamton epositKer ;idin
Dangil‘-e \po L 9

Figure 15. Series 2, 1:1,000,000. Map covers 1° longitude, 1°
latitude.

90 1 ! I 1 I I T I
80 |- 1:1,000,000
70
80 I
50 |-

40 -

% Placed

1:2,000,000
30 -

20 - 1:3,000,000

10 1:4,000,000

0 |
1 2 3 4 5 6 7 8 9 10

Decile
Figure 16. Graph of the percentages of features in each decile that

were placed on selected maps from Series 2.

ber of features, Series 1 and Series 2 maps were created
with neighborhood sizes set to their minimum values. As
a result, some names appear too close to one another. Fig-
ure 15 contains several pairs of names that are too close:
Genegantslet and Ives Settlement, Lower Genegantslet

Cartography and Geographic Information Systems

|
ran Small Corners®

o
5 Cazenovia "
Morrisville, C"l"a""“ﬂ
Perkins Corner 2 Morrisville St East Winfield®
West anno Hamilton [}
. Leonargsvile  Dogtown
Keeney  Lebanon Canter Moscow Hill Gk
Middleport o
o
Tripoll 5 [} Columbus Oua.nero o
B .
Lincklaen Center oy, Burlington
© Cheningo South Edmeston,  © Amblers Crossing
& Plymouth
uTa)dor Vb Chenango Lake
<]
Mount Vision®
Preston iy rville
. -] o
Cincinnatus Norwich
9 White Store
& German Four Corners Grigonte
Wilket Gaminlomar _ olond . -
Penelope Mount Uptond,  Gopes Corner
Smithville Center o
hvas Settlemaent P o
Trlangleo QGreane ockdale Brool I_',rno —
o y
Lower Genegantslet Corner Sidney Arabla®
o
Blackeslay Cor'nsr o OTacsma Mundals
Newmans Comer Ivanhoe
° o Walton
Cleaver
Howes
: China® Beerslon
Binghamton ° o
O spey, @
o] Rock Rift
Hawle 1t Shlnhoppleo
L e Danville { OKerry Skiing

Figure 17. Map covering the same region and displayed at the
same scale as Figure 15. The feature neighborhoods have been
extended to increase the minimum distance between adjacent labels.

Corner and Sidney, Deposit and Kerry Siding, and Corbin
Corner and Rockwell Mills. The map in Figure 17 covers
the same region at the same scale as does Figure 15, but
extends the feature neighborhoods to increase the distance
between names on the map. Since labels are spread further
apart on Figure 17 than on Figure 15, fewer places appear
on Figure 17.

Summary

It has been the intent of this paper to demonstrate the
power and flexibility that parallel processing can bring to
automated name placement. Test results of the parallel name-
placement procedure introduced in this paper show that

1. Features and places can be selected from a single da-
tabase over varying windows and map scales

2. The execution performance of the procedure degrades
slowly as scale decreases

3. If the number of names in the map database window
is less than the total number of processors, increases
in execution time are related primarily to increases in
feature density, not to increases in the overall number
of names in the map database window

4. Feature selection is limited to the most important places
as scale decreases

5. The selection of unimportant features is suppressed
in areas of high feature density

81



Although much more work is required to produce a fully
functional system with provisions for line and area names
or with the capabilities to produce thematic compaositions,
the application of the current generation of parallel com-
puters to automated name placement can result in enor-
mous reductions in computing time over serial-computer
implementations. It is also worth restating that parallel
computing architectures offer the designers of cartographic
algorithms the freedom to model their computational en-
vironments around their problems, rather than force them
to fit their problems to fixed architectures. It is hoped that
with the increasing availability of parallel computers will
come a matching interest in the exploration of these new
and exciting resources.

ACKNOWLEDGMENT
This work was conducted using the computational resources of
the Northeast Parallel Architectures Center at Syracuse University.

REFERENCES

Cromley, R.G. 1985. “An LP Relaxation Procedure for Annotating
Point Features Using Interactive Graphics.” Proceedings of Auto-
Carto 7, pp. 127-132.

—. 1986. “A Spatial Allocation Analysis of the Point Annotation
Problem.” Proceedings of the Second International Symposium on Spatial
Data Handling, pp. 38-49.

Ding, Y., P.J. Densham, and M.P. Armstrong. 1992. “Parallel
Processing for Network Analysis: Decomposing Shortest Path
Algorithms for MIMD Computers.” Proceedings of the Fifth Inter-
national Symposium on Spatial Data Handling, pp. 682-691.

Doerschler, J., and H. Freeman. 1989. “An Expert System for Dense-
Map Name Placement.” Proceedings of Auto-Carto 9, pp. 215-224.

Douglas, D.H., and T.K. Peucker. 1973. “Algorithms for the Re-
duction of the Number of Points Required to Represent a Digi-
tized Line or its Caricature.” The Canadian Cartographer, vol. 10,
no. 2, pp. 112-122.

Ebinger, L.R., and AM. Goulette. 1989. “Automated Names
Placement in a Non-Interactive Environment.” Proceedings of Auto-
Carto 9, pp. 205-214.

Franklin, R., C. Narayanaswami, M. Kankanhalli, D. Sun, M. Zhou,
and P.Y.F. Wu, 1989. “Uniform Grids: A Technique for Inter-
section Detection on Serial and Parallel Machines.” Proceedings
of Auto-Carto 9, pp. 100-109.

Freeman, H., and J. Ahn. 1984. “AUTONAP: An Expert System
for Automatic Map Name Placement.” Proceedings of the First
International Symposium on Spatial Data Handling, pp. 544-571.

82

Hansen, P.B. 1990. “The Nature of Parallel Programming.” Natural
and Artificial Parallel Computation, M.A. Arbib and ].A. Robinson
(eds.). Cambridge, Massachusetts: The MIT Press. Hillis, W.D.
1985. The Connection Machine. Cambridge, Massachusetts: The
MIT Press.

Hirsch, S.A. 1982. “An Algorithm for Automatic Name Placement
Around Point Data.”” The American Cartographer, vol. 9, no. 1,
pp. 5-17.

Hopkins, 5., R.G. Healey, and T.C. Waugh. 1992. “Algorithm
Scalability for Line Intersection Detection in Parallel Polygon
Overlay.” Proceedings of the Fifth International Symposium on Spatial
Data Handling, pp. 210-218.

Imhof, E. 1975. “Positioning Names on Maps.” The American Car-
tographer, vol. 2, no. 2, pp. 128-144.

Langran, G.E., and T.K. Poiker. 1986. “Integration of Name Se-
lection and Name Placement.” Proceedings of the Second Interna-
tional Symposium on Spatial Data Handling, pp. 50-64.

Mower, ].E. 1989. ““The Selection, Implementation, and Evaluation
of Heuristics for Automated Name Placement.”” Doctoral disser-
tation, State University of New York at Buffalo. Available through
University Microfilms International, Ann Arbor, Michigan.

—. 1992. “Building a GIS for Parallel Computing Environments.”
Proceedings of the Fifth International Symposium on Spatial Data Han-
dling, pp. 219-229.

Robinson A.H., R.D. Sale, J.L. Morrison, and P.C. Muehrcke. 1984.
Elements of Cartography. New York: John Wiley and Sons.

Rohrbacher, D., and ]J.L. Potter. 1977. “Image Processing with the
Staran Parallel Computer.” Computer, vol. 10, nc. 8, pp. 54-59.

Trew, A., and G. Wilson. 1991. Past, Present, Parallel: A Survey of
Auailable Parallel Computer Systems. London: Springer-Verlag,

U.S. Geological Survey. 1987. Geographic Names Information System.
Reston, Virginia: U.S. Geological Survey.

Wu, C.V., and B. Buttenfield. 1991. “Reconsidering Rules for Point-
Feature Name Placement.” Cartographica, vol. 28, no. 1, pp. 10-
27.

Yoeli, P. 1972. “The Logic of Automated Map Lettering.” The Car-
tographic Journal, vol. 9, no. 2, pp. 99-108.

Zoraster, S. 1986. “Integer Programming Applied to the Map Label
Placement Problem.” Cartographica, vol. 22, no. 3, pp. 16-27.
—. 1990. “The Solution of Large 0-1 Integer Programming Prob-
lems Encountered in Automated Cartography.” Operations Re-

search, vol. 38, no. 5, pp. 752-759.

—. 1991. “Expert Systems and the Map Label Placement Prob-
lem.” Cartographica, vol. 28, no. 1, pp. 1-9.

Zoraster, S., and 5. Bayer. 1987. “Practical Experience with a Map
Label Placement Algorithm." Proceedings of Auto-Carta 8, pp. 701-
708.

Cartography and Geographic Information Systems



	Mower1993CGIS69to74
	Mower1993CGIS75to76
	Mower1993CGIS77to82

