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Abstract

In this paper, the author will compare the relative benefits and problems
introduced by the application of competitive learning and Bayesian statistical
approaches to line feature clustering. The paper will examine the cognitive aspects of
pattern recognition (comparing issues of similarity in feature space to similarity in
descriptor space) as well as computational issues associated with the implementation
of Bayesian and competitive learning procedures on sequential and parallel processing
environments.

Introduction

The usefulness and beauty of a map largely depends upon the quality of its
linework. Quality is reflected in the appropriate selection, placement, and execution of
line features. Current laser printing and plotting devices render examples of automated
linework that are often indistin guishable from those of a trained cartographer.

The automatic selection and placement of features is more problematic and
remains an area of active research. Effective representations of line features are
distinguished by their identification of critical points along the line (Marino 1979).

Most current line simplification procedures require an operator to choose a
tolerance value that guides the selection of critical points. Buttenfield (1987) suggests
that line feature categories be established with associated tolerance values. The
selection of a tolerance value then becomes a pattern classification problem.

This study compares the application of competitive learning procedures and
standard cluster analysis procedures to the automatic clustering of cartographic lines.
Competitive learning is one of several basic parallel distributed processing (PDP)
mechanisms that have been applied to pattern recognition problems (Rumelhart and
others 1986). Samples of digitized linework, represented by sets of Fourier
descriptors, are submitted to an ART2 network (Carpenter and Grossberg 1987) and
the SAS CLUSTER procedure. Cluster assignments are compared. Issues of
computational efficiency and cognition are discussed as they apply to the clustering
procedures.

Clustering and Classification

Classification procedures assign observations to pre-existing categories,
Clustering procedures take a set of observations and group them on measures of
multivariate similarity, without regard to a priori class definitions. This study will use
clustering procedures to suggest future line taxonomies and to serve as a preliminary
line feature/attribute lookup table.

85




Describing the Shape of Cartographic Lines

Representing Lines

Cartographic lines can be described i
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. pe descriptors from vector i i
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Methods for Describin g Lines
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Symmetric axis transform (SAT) and methods bgsed Emflﬁ:t;oufi(;?%-aﬁgmﬁe

operate upon closed lines. Qthers, Jj . i
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This study will use the Fourier descri
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(1) they are invariant under graphic transformations;
(2)  they provide a compact description of shape; and

3) they are easy to compute,
Generating Fourier Descriptors of Cartographic Lines

. Zahn and Roskies (1972) discuss a method i
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where

k
k= Zay4 ®

i=1

In formulas (1), (2), and (3), m is the number of vertices on the closed curve,
A®y is the change in angle of the line at vertex k, L is the total length of the line, and
Al; 15 the length of the line segment between vertices 1 and 1+1.

Approaches to Line Pattern Clustering
Cluster Analysis

Rohlf and Archie (1984) establish a mosquito wing shape taxonomy derived
from a cluster analysis of digitized wing samples. Using Fourier coefficients as shape
descriptors, the authors digitized photographs of the right wings of 127 species of
mosquitoes. They computed a matrix of Fourier coefficients for the first 15
harmonics. This matrix was submitted to several multivariate analysis procedures,
including cluster analysis.

The authors found that cluster members were visually similar but that the
overall clustering pattern was not closely related to preexisting taxonomies. They also
state that individual Fourier coefficients are unlikely to be morphologically

meaningful.

For the first 15 harmonics, the authors found the shape contribution of the odd
harmonics to be much lower than that of the even harmonics. In their study of dual
axis Fourier shape analysis for cartographic forms, Moellering and Rayner (1984)
found that the coefficicats of the first 5 harmonics explained 99% of the variance in
the shape of the island of Hokkaido. Zahn and Roskies (1972), operating on hand-
printed character sets, found that the coefficients from 10 harmonics were sufficient to
reconstruct visually recognizable numerals. They cite work by Brill (1967) who found
that approximately seven harmonics were sufficient for discriminating between five

numerals.
Competitive learning techniques

Pao (1989) and Rumelhart and others (1987) review developments in parallel
distributed processing (PDP) that have led to the creation of procedures for learned
clustering and classification of novel input patterns.

PDP studies the application of massively parallel processing networks to
information processing. Individual processors in a network compute simple functions
of their input, broadcasting their output values through weighted links to other
processors as inhibitory or excitatory signals. A set of weights typically maps multiple
input patterns to unique output patterns.

A recurring theme in PDP processing is the generation of appropriate response
patterns to presentations of stimulus patterns. These pattern associators "learn" to
generate response patterns through repeated exposure to stimulus-response pairs.
Similarly, auto associators learn to identify a pattern from a degraded input sample.
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This study will examine PDP regularity detectors, or competitive learning
networks, that cluster novel input patterns without regard to @ priori categories.
Competitive learning networks are composed of an input layer and an output layer, If
a processor in the input layer detects a stimulus in the input pattern, it broadcasts an

output layer will consistently win competitions for "similar” patterns. In thig sense,
competitive learning networks cluster their input patterns.

Carpenter and Grossberg (1987) discuss the development of adaptive resonance
theory (ART) and its application to clustering problems.  ART clustering procedures
add the concept of a vigilance parameter to clustering, preventing clusters from
claiming input patterns if the measured distance between the pattern and the cluster
center is greater than the vigilance parameter value. The authors have developed ART
procedures to cluster binary (ART1) and analog (ART2) input patterns,

Cluster Analysis and PDP

Everitt (1974) generalizes clustering as the grouping of similar entities and the
separation of dissimilar entities with respect to the scores of the entities on a set of
variables. Clusters may be formed hierarchically, with larger clusters subsuming
smaller ones or they may represent a partitioning of the entities into mutually
exclusive regions.

Everitt notes that definitions for cluster and similarity are often vague. Asa
result, it is difficult to identify the number of clusters Present in a data set.

During each iteration, a hierarchical clustering procedure assigns entities and
clusters to larger clusters. The investigator is responsible for determining the
appropriate number of clusters. Competitive learning networks partition the pattern
space, “assigning" novel patterns to Pprocessors in the output layer.

McClelland and Rumelhart (1988) note that competitive learning procedures
may not produce stable cluster assignments if input patterns lack structure. ART
networks control pattern oscillation through the vigilance parameter. As the value of
the parameter is increased, the number of clusters will increase and cluster size will
decrease.

Competitive learning networks are inherently parallel constructions, Carpenter
and Grossberg (1987) note that the performance of an ART network does not degrade
significantly as the number of pattems increases, assuming that the number of
available processors in the output layer remains large relative to the number of input
patterns.

Most cluster analysis procedures operate on sequential computing
architectures. As such procedures are rewritten for parallel architectures, their
expected running time will decrease considerably. It is necessary, then, to compare
cluster analysis and competitive learning procedures on the quality of their output
rather than on the speed of its production.

Cartographic Line Clustering

Recent studies have proposed techniques for clustering linework. Buttenfield
(1987) identifies 5 variables for describing cartographic lines and uses these
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i ify hi lel algorithms for
tors to classify line samples. Mower (1988) dpvclops_ paral
?nii)(igl%e;ﬁng Butteiy.ﬁeld's classification procedure in matrix and neural nzt(\!vork
programming models. Mower (1990) uses Fourier descriptors and ART2 procedures
to cluster digitized linework.

Method

i ses the set of line samples digitized for Mower (1990), taken from

14 Uségllslsgtgg?()(l)lo topographic maps. 'I‘:;]c.s_ct c&pmsts of 339 e:gg::;)rgf ?lf;evinaig
i d 5 sections of rivers. 11 of the coastlines were

g,:tsatzlilg?ngn Lake Michigan shorelines, 3 were barrier beaches along the south El;ore odf
Long Island, New York, 9 were sections of the mid and northern Maine coas nftj,st,h
were selected from New York state Finger Lakes shorelines, 6 were secugn% [ i;
Chesapeake Bay coastline, 3 were portions of the South Carolina an e?rtgh
coastlines, 1 was a section of the Washington coast, and 2 were sections of the

Virginia Atlantic coastline.

i i : i i in the Grand
The 5 rivers included 1 section each of the Coloradp River in
Canyon, ﬂ?e Genesee River in New lfork, the lower Hudson River, and the Pearl and
Black Rivers in Mississippi and Louisiana.

i i Zahn and Roskies
Fourier coefficients cannot be extracted from open curves. I
(1972) solve this problem for stroked characters by first performing an outline trace of
the component strokes and then extracting coefficients from the trace.

izati i d coastlines
This study uses a polygonization procedure to convert the rivers an
to closed cirves.y'l‘hc Foul?nqer coefficients for the first 10 harmonics are extracted from
the polygonized linework using equations (1), (2), and (3).

RS

Figure 1, A line sample (top) and its polygonized form
ART?2 Procedure

submitted the raw Fourier coefficients to an ART2 simulator,
pl'ovide(l?{I g;v %1119323. For a detailed description of the simulator, see Rao and lothe.rs
(1989) and Mower (1990). The simulator assigns each line sample to a c ustczi
represented by a logical processor. An input layer reads pattern mfox:\nauoré ann
outputs weighted values to the cluster processors (the output layer).h ﬂ:op-l o:vr
vigilance parameter prevents the assignment of patterns to clusters when eil c ust lf
activation falls below the vigilance threshold. If no cluster is similar moug1 to the
sample (that is, if no cluster is activated above the vigilance threshold), a new cluster is
formed.

Clustering Procedure

Everitt (1974) notes that strongly correlated variables can promote spurious
clustcﬁn;.e%mgelaﬁc)ms of the Fourier coefficients showed that the Ajand the Ay g
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coefficients were strongly correlated. To examine the effect of these correlations on
the clustering procedure, a principal components analysis was run on the Fourier
coefficients. None of the coefficients loaded highly on any of the first six components.
A cluster analysis based upon the first six components differed markedly from an
analysis conducted on the raw coefficients, producing visually dissimilar clusters, No
further analysis was conducted on the principal components.

The raw coefficients were submitted to the SAS CLUSTER procedure using
the average linkage method and Ward's minimum variance method. Both methods
perform hierarchical clustering. Cluster agglomeration was halted at 10 on inspection
of pair-wise RMS distance values across joined clusters.

Results
ART?2 Cluster Assignments

Mower (1990) found that the Rao ART2 simulator produced several,
moderately sized clusters with relatively similar appearing lines at a vigilance
parameters of .006. When the vigilance parameter was strengthened, the most visually
dissimilar samples consistently dropped out of larger clusters. However, the stronger
values also assigned a large proportion of the total samples to unique clusters.

Although several of the ART2 clusters were visually homogeneous, the
geomorphological processes associated with the lines were often quite different. It
was found that the ART?2 cluster assi gnments were not geomorphologically based.

SAS Cluster Assignments

Ward's minimum variance method tends to produce similar sized clusters (SAS
Institute 1985). For the 10 line sample clusters, cluster 1 and cluster 2 assignments
dominate the remaining clusters (16 and 9 assignments respectively). However, each
of the remaining clusters, except for cluster 10, hold 2 or 3 samples. Cluster 10 holds
1 sample. The average linkage method docs not produce such regular cluster sizes.
Cluster 1 assignments dominate the other clusters (27 assignments). The remaining
cluster assignments fall to 4 for cluster 2, 3 for clusters 3 and 5, 2 for cluster 4 and 1
for clusters 6 through 10.

Ward's method produces clusters that are more visually homogeneous than
those produced by the average linkage method. Although all but 1 of the samples that
Ward's method assigns to cluster 1 are also clustered together by the average linkage
method, many of the 2 and 3 member clusters differ in their groupings.

The average linkage method groups samples together that are sometimes
visually dissimilar, This is most apparent in cluster 1. Not surprisingly, all but one of
the samples from the Atlantic beaches (from Long Island, New York to South
Carolina) and all of the New York State Fin ger Lakes shorelines are assigned to cluster
1. However, 2 samples from the Maine coast and 1 from the Chesapeake Bay
shoreline are also assigned to cluster 1. In cluster 4, a section of the Maine coastline is
grouped with a section of the Lake Michigan shoreline. Although the Lake Michigan
sample is not smooth, it is much less crenulated than the sample from Jonesport,
Maine. L

Average linkage does produce several clusters of lines that are reasonably
similar in appearance. Cluster 2 contains 2 samples from the Chesapeake Bay
shoreline, a section from the Genesee river and a section of Maine coastline. Although
visually similar, no clear geomorphological process dominates the cluster. Most of the
other clusters lack common processes as well.

20

's method produces a more visually homogeneous clustering of Atlantic
bcachcsw aar-lr((i1 sl’ingéhr Laxl,ces shorelines (cluster {). Unlike cluster 1 in the average
linkage method, only about half of the Great Lakes shorelines are assigned to cluster l1
the other half are assigned primarily to cluster 2. Cluster 2 is relatively visually
homogeneous, except for the inclusion of a section from the Camden, Maine coastline.
Of the 9 sections of Maine coastline, this section is probably the least crenulated.

Ward's method produces many small clusters with good visual similarities.
These examples are displayed in Figures 2a through 2d.

Comparison of ART2 and SAS Cluster Assignments

The ART2 and SAS procedures generate relatively good visual clusters of the
line samples. However, none of the clustering procedures produce clusters that are
geomorphologically consistent.

Rohlf and Archie (1984) found that clusters of mosquito wing shapes based
upon Fourier coefficients ignored structural characteristics. It is likely that Fourier
coefficients are generally not well-suited to the extraction of process-based clusters.

If cluster assignments are not grounded in geomorphology, then evaluations of
the clustering methods must be based on other measures of shape or cognitive
measures of similarity. Moellering and Rayner (1982) suggest several other measures
of shape for cartographic analysis.

Conclusion and Suggestions for Further Research

i iti i i for
This study has compared competitive learning and cluster analysis methods
the clustering og cartographic line samples. We have found that both methods
produce reasonable visual clusters of line samples, yet do not incorporate knowledge
of geomorphological process.

A number of extensions to this study may be examined before abandoning the
use of Fourier coefficients as process oriented shape descriptors. The number of
samples can be increased to include more representatives of well-defined processes.
As such information is added, the study will move from a clustering problem to a
classification problem. A priori knowledge of class distributions will allow us to
develop and evaluate new shape discriminants.

We have not shown a clear difference between the results of a cluster analysis
procedure or that of an ART2 procedure. For line clustering, the main advantage of an
ART?2 procedure is its insensitivity to variations in the number of known clusters. The
author intends to extend this study to the evaluation of other shape descriptors for
cartographic line clustering and classification and to explore matrix parallel algorithms
for identifying linear features.

Figure 2a.  Ward's method. Both samples are from Chesapeake Bay
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Figure 2b.  Ward's method. The 1st, 2nd, and 4th
sample is from a Great Lakes shoreline

7

Figure 2c.  Ward's method. From left 1o
section of the north shore of

samples are from the Atlantic Coast. The 3rd

right, a Great Lakes shoreline, an Atlanti
cc
Long Island, and a section of the Maine cmﬂﬂsﬁmﬂ !

F 2y

Ei
igure 2d.  Ward's method. From the left, a river and two sections of the Maine coast
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Abstract

The increased availability and popularity of parallel computers is of
considerable importance for the GIS community because of the ever increasing
demands for intensive processing of large data sets. This paper investigates the
design and implementation of the first stage of a parallel polygon overlay
algorithm, namely line intersection detection. The algorithm employed, which
uses Franklin's uniform grid technique is discussed, together with issues
specific to its implementation on a transputer array, an MIMD distributed
memory parallel computer.

Introduction

Polygon overlay is central to many kinds of GIS analysis, but it is also
frequently the source of major bottlenecks in processing, particularly when
large coverages, stored in vector form, are to be overlaid. The computationally
intensive nature of overlay arises from two sources. The first of these is the
fundamental combinatorial complexity of the operation (Saalfeld 1989), with a
requirement to compare many line segments with many others for the purpose
of locating intersections, even though this task can be reduced in magnitude by
strategies to localize the comparisons made (e.g. White 1978). The second is
that overlay is a multi-stage operation, involving not only line intersection
detection but also linkage of intersected arcs from the overlay map coverages to
form new polygons and the assignment of attributes from the overlay coverage
polygons to these new polygons.

The combined requirement for computationally intensive localized and multi-
stage processing suggests that vector polygon overlay operations could be
enormously accelerated by implementation on parallel processing machines
using a combination of geometric decomposition and algorithmic
parallelization techniques (Bowler et al. 1987). This paper describes the design
and implementation of an algorithm for parallel line intersection detection on a
large parallel machine, using a uniform grid technique. The work is part of a
larger investigation into parallel polygon overlay methods. An algorithm for
the polygon linkage stage has also been developed, but this will be the subject
of a future paper.
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