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ABSTRACT

The purpose of this paper is to suggest that models of cartographic
lines are well suited for representation within neural network data
structures and architectures. The use of such representations will
likely improve the performance of automated line simplification routines
that apply specific simplification techniques to recognized patterns.
Buttenfield has discussed several methods for segmenting and describing
variation in cartographic lines and has developed a procedure to
recognize line features automatically (1986, 1987).  Pawlicki (1988)
introduces an architecture for the storage and reference of model
memories based on neural mnetwork, parallel distributed, and
connectionist architectures. This  paper will discuss the
implementational jssues and expected performance statistics associated
with the application of Buttenfield's line recognition procedure to
sequential and comnectionist processing environments.

INTRODUCTION

Line generalization involves the systematic removal of unwanted detail
from the visual display of a linear feature. In digital computing
environments, line generallzation is performed to satisfy several
constraints.  First, the visual complexity of a displayed line must be
made appropriate for the scale of presentation. Additionally, the
digital representation of the 1line must support efficient storage and
processing operations (Douglas and Peucker, 1973).

APPROACHES TO AUTOMATED LINE FEATURE CLASSIFICATION
Buttenfield (1987) argues for the selection of tolerance values for 1ine

generalization procedures based upon the geomorphic structure of the
feature represented by the line as well as the scale at which the line

is displayed. The selection of appropriate tolerance values is thus

dependent upon the ability to recognize specific structures from digital
line files.

The paper will examine the performance characteristics of automated line
generalization routines in sequential and parallel processing
environments. Buttenfield's technique for identifying the structure of
cartographic lines will serve as the pasis for procedures for both
processing environments. The author will comparée the expected
performance of the two versions and discuss the computational issues
associated with their implementatiom.

Buttenfield's Technique for Identifying the Structure of a Cartographic 3

Line

Buttenfield uses a two-step procedure to classify features isolated in

digital line files. Individual features along a line are first isolated
and assigned to a category on the criterion of maximum similarity to the
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LINE RECOGNITION FOR SEQUENTIAL COMPUTING ENVIRONMENTS

A sequential version of Buttenfield's classification

summarized in Figure 1. technique is

For each unknown line:
For each feature along the unknown line (FAUL):
For each feature category:
For each varilable:
Find z value for FAUL;
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LINE RECOGNITION MODELS FOR PARALLEL COMPUTING ENVIRONMENTS
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relationships among units through sites. A unit x has n links
associated with it, where each link serves as input to the unit through
a site. At each processing step, the activity levels of the units are
computed simultaneously as a function of their dinputs and previous
states. Weighting functioms along links control the mutual influence of

units upon one another.

Pawlicki (1988) presents a top-down conmnectionist architecture for rapid
model indexing in computer vision systems. In a top-down system, the
output of a lower level unit is not allowed to affect a higher level
unit. Pawlicki's architecture extracts features (items) from an input
image, compiles them into an item list, and selects configurations of
items from the item list to match known patterns held in an internal
model (objects). The spatial relationships between the. pairs of objects
are held in a relational array. The contents of the relational array
are matched against patterns held in the memory model (state space
memory vector) using content-addressable memory operations. Hopfield
(1982) and Rumelbart and others (1987) refer to content—addressable
memory as the ability to access entire memory items (in Pawlicki's
system, an item held in the state space memory vector) from a partial
description of their contents. Pawlicki notes that neural networks have
been shown to perform content-addressable memory operations in a few
time steps. The architecture supports multiple canonical views,
allowing the referencing of features over multiple viewing angles.

Iine Recognition and General Vision Problems

The problem of recognizing lines in an 1input map image is more
constrained than that of recognizing representations of three-
dimensional objects in two-dimensional scenes. First, only linear
features are referenced. Second, assuming that input map images are
constructed using orthogonal perspective exclusively, the storage of
multiple canonical views of lines in memory may be abandoned in favor of
the storage of scale dependent representations of lines.

A CONNECTIONIST PROCEDURE FOR LINE RECOGNITION

A connectionist procedure for line recognition will now be developed
using the syntax and terminology of Pawlicki's architecture. It 1s
assumed that line features have been extracted from an input map image
using Buttenfield's raster algorithm (1984) and that the extracted
features have been processed to obtaln values for their length, widch,
bifurcations, and other indexing variables.

The comnectionist implementation of Buttenfield's line identification
procedure is relatively straightforward. The type of input to a
function will vary with the level of processing. At the feature
category level, unit sites will calculate z-scores between feature
descriptor variables for features (input) and feature categories held in
the model memory. The activation level of a feature will be a function
of the similarity of its measures to those held in a feature category.
Slots in the feature category list will claim features with which they
have high activations. To prevent features with low activation levels
from being claimed by a feature -category, the minimum level of
activation required to associate a feature with a feature category will
most likely be determined by a mnon-linear threshold function. At the
line category level, units will perform least squares calculations
between the percentages of features claimed by each feature category
(input) and the feature configurations for kmown lines held in the state
space memory vector. The unit having the lowest least squares statistic
will be selected as the representative line.

Programming Issues

The connectionist procedure for line recognition outlined above may be
programmed on a Connection Machine or on one of several connectionist
simulators. The author is currently developing an implementation on the
Rochester Connectionist Simulator (RCS). RCS simulates a massivel

?arallel computer architecture on a sequential processing machine. ch
lE written in the C programming language for the Unix operating system.
The current version of the simulator will support a network of
approximately 250,000 links on a Sun 3 workstation. °

At each 1level in a network, units, sites, and links are associated with
processors capable of computing functions on their inputs. Users ma
select functions from a system library or define their own. The out u{
of a function is referred to as the level of a unit's activation. ?

If correlations are used to identify lines, the operation of the network
will be more complex. At the feature category level, the unit sites
will calculate correlations between feature descriptor, variables for
features (input) and feature categories held in the model memor At
the line category level, the unit sites will calculate correlZéions
between selected features from the feature list (input) and feature
configurations for known lines held in the state space memory vector

The value of the correlation will become the activation of the umit a;
the lower l?vel. The unit at the lower level having the highest
activation will claim the slot for the higher level in winner-take-all
competition. At the 1line category level, low correlations will cause
the system to search for mnew configurations of features. Low
correlations at the selected feature level will cause the system to
search for new features to fill the slots in the selected item iist.

COMPARING THE SEQUENTIAL AND PARALLEL PROCEDURES

The expected performance of a comnectionist system will depend on the
number of processors and their degree of connectivity. Connectivity can
be stated in terms of the fan—in and fan-out values of units. Fan—in is
the number of units that directly affect a given unit. Fan-out is the
number of units directly affected by a given unit (Rumelhart and others

1987). Feldman and others (1988) note that fan—in and fan—out i;
typically lgrge in animal brains (over 1,000) but low in conventional
computer chips (6 or less). RCS will allow the construction of a

network having a maximum of approximatel
g - Teviee pproximately 2,000 units, each having a

RCS allows the user to control the degree of fan—in and fan-out for the
units. If z-score functions are assigned to sites, a large number of z-
score calculations can be performed during a single time step. If 100
features compete for 10 positions on the selected feature lisé at some
point during processing, 1,000 z-scores can be computed simultaneously
by processors at unit sites. In such a case, the units at the selected

feature level would have a fan—out of 100
A o Tl e s o and units at the feature level

A Sample Problem

Table 1. summarizes the expected performance of the sequential and
connectionist implementations of Buttenfield's 1line identification
procedure for a sample problem. For the problem, it is assumed that 10
features have been extracted from a given line and that the state space

uemory vector holds descriptions of 4 1i i
B e corerorio nes (feature configurations) and



Using the sequential procedure in Figure 1, and assuming that a z—-score
computation can be performed in one time step, 450 time steps will be
required to calculate z-scores for 5 line descriptor variables. 10
additional steps are required to find the maximum similarity of each
feature to each feature category. 36 time steps will be required to
perform all of the least squares calculations assuming each requires one
time step. 1 step will be required to assign the line to a line
category.

Using the connectionist procedure, 5 time steps are required to perform
all the z-score calculations, one for each feature descriptor variable,
assuming that each unit at the feature level 1is linked to all the
feature categories. 1 step is required for slots at the feature
category level to claim features at the feature level. 1 step 1is
required for units at the line category level to compute the necessary
least squares calculations. 1 step is required to assign the line to a
line category.

Function Connectionist Steps Sequential Steps
Z-score 5 450

Maximum similarity 1 10

Least squares 1 36

Line identification - 1 1

TOTAL STEPS 8 497

Table 1. Time steps required by the sequential and connectionist
implementations of Buttenfield's cartographic 1line identification
procedure

DISCUSSION

Connectionist implementations of automated line recognition procedures
have two attractive properties. First, they are expected to terminate
in far fewer time steps than are sequential implementations. Second,
line recognition appears to integrate well with connectionist models of
human vision systems.

Connectionist architectures may be suitable enviromments for developing
other cartographic expert system procedures. The author is currently
exploring the use of RCS to model cartographic name placement. Although
the development of conmectionist procedures may precede the avallability
of compatible hardware, the expected performance of connectionist
architectures for cartographic problems justifies its explorationm.
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