Geography, University of Washington, Seattle.

Stenhouse, H., 1979. "Selection of Towns on Derived Maps." The
Cartographic Journal, vol 16, June 1979: 30-38.

rcepfer, F. and W. Pillewitzer, 1966. "The Principles of
selection.” The Cartographic Journal, wvol 3, June 1966:

10-16.

vasmut, A.S., 1967. "Modeling the Process of Producing
Togoggaphxc Maps." Geodesy and Aerophotography, 1967:
222-227.

64

NAME PLACEMENT OF POINT FEATURES THROUGH CONSTRAINT PROPAGATION

James E. Mower
University at Buffalo
Buffalo, New York 14214
U. S. A.

Ahs.u.aﬂ

The prospect of creating a fully automated map production
system for the user with little or no experience in cartographic
design presumes the development of a fully automated routine for
performing name placement. This paper describes an algorithm for
the propagation of name placements for point features which
resolves space competition conflicts through labeling adjustments
based upon dependency related backtracking or through the
selective deletion of features in densely clustered areas.

Introduction

Our exposure to the ever increasing quality and availability
of computer output devices has stimulated us to develop mapping
software that can make use of these new capabilities. As the
number of computer generated cartographic products has increased,
so have efforts to produce them under standards that
cartographers have long applied to manual production techniques.

Several of the major commercial statistical packages already
offer-graphic output, in the form of charts or largely user-
created maps. We can increase the usefulness of these graphics
procedures by minimizing user interaction, assuming that the
users are largely uninterested in the details of map design.
Other applications that will require fully automated map
production are systems for performing automatic map-based
navigation as well as for mapping rapidly changing phenomena.

Many aspects of map production are well suited to the
application of algorithms, that is, procedures that are known to
unambiquously and effectively solve problems and then terminate.
Examples of such activities include contouring and hill shading.
Algorithms to perform these activities simulate an objective set
of discrete procedures or steps that cartographers could also use
to solve the problems manually.

Unfortunately, there are several important cartographic
activities for which objective procedures are lacking. One such
activity is name placement. Although guidelines for good name
placement exist, they are often stated and understood within an
intuitive or subjective framework (Imhof, 1975; Yoeli, 1972).
And, more to the point for algorithm development, few guidelines
suggest a stepwise ordering of name placement tasks, Like Yoeli
and Freeman and Ahn, we may propose a guideline that names be
ordered in terms of the sizes and functions associated with them
(Yoeli, 1972; Freeman and Ahn, 1984). We would then place areal

65

ames before point names and larger names before smaller names.
'he application of such guidelines or heuristics does not
uvarantee that our algorithm will move forward without making a
iistake in a placement. Rather, they characterize a best guess
r a rule of thumb for solving a problem.

A heuristically driven program must be able to recover from
rrors that occur when a best guess does not provide the best
olution at some stage of execution. Typically, such programs
eturn (backtrack) to a state before the problem occurred and
hen move forward with a different approach. To backtrack
fficiently, a program must have the capability to record the
hoices that led to the current problem (Winston, 1984). Several
ecent approaches to name placement have used backtracking
echniques (Freeman and Ahn, 1984; Ahn, 1984; Lewis, 1982),

We can limit the amount of backtracking within a procedure
y taking advantage of natural constraints that are associated
‘ith a problem. Because cartographers work with a finite map
pace, the addition of name A to that space necessarily
onstrains the latter positioning of other names within the
eighborhood of the feature that A represents. The neighborhood
f a feature refers to the polygon delimiting all possible
lacements of the name of the feature. If a placement conflict
ccurs, the resolution of the conflict will be limited to the
eprocessing of the neighbors of the changed feature.

Several published guidelines for the placement of names for
oint features rank the quality of a placement in terms of its
osition relative to the feature it represents. Imhof, for
xample, suggests that the best placement for a label is to the
pper right of the point symbol. He further suggests that
artographers avoid placing names off to the left of a feature.
‘oeli agrees that the best placement is to the upper right of a
eature, but ranks some placements to the left of a feature as
iore desirable than others to the right. We can similarly
iscriminate between good and bad placements on their distances
rom the features they represent. Imhof notes that the distance
f a name from its feature varies on the graphic nature of the
iap, map scale and the sizes of the objects and the typefaces by
‘hich they are named. We must also require that a name be
nambiguously associated with its feature. Of course, we must
revent names from overlapping other names, features or symbology
£ the same color. Because the current paper will be limited to

discussion of constraint propagation methods for generating
.ame placements, we will consider only the cases in which
lacements interfere with other placements or point features.

66

Using Constraints to Analyze Line Drawings

Like people, computers can make use of natural constraints
to resolve ambiguous situations. When we move our head and
notice an object which appears to shift against another
"stationary"” object, we infer that the shifting object is closer
to us than the stationary object. Likewise, we are more apt to
understand a diagram representing three dimensional figures if
those figures are accompanied with representations of shadows.

Waltz has shown that a computer can generate descriptions of
objects from line drawings given a set of constraints (Waltz,
1975). These constraints operate in two different senses.
First, we impose a set of restrictions upon the images that the
computer will process. We do not permit the occurrence of view
specific junctions, that is, junctions between objects that
change radically with a slight change in the position of the
viewpoint, We also limit the number of possible line junction
types to a small, finite number. Waltz's first procedure made
use of only 18 such junctions. Second, the labeling of a line
junction is constrained by the labels of its neighboring
junctions. A line extending from a junction is compatible only
with a line of the same type extending from a neighboring,
junction. Lines may represent concave edges, convex edges, or
boundaries between objects and the background. ;

Waltz's procedure begins by visiting a junction and
assigning it all possible geometrically correct labels. It then
finds the neighbors of the current feature and puts them on the
processing stack. As a junction is popped off the stack for
inspection, the procedure checks whether it has previously
inspected it. If not, it assigns the junction a set of possible
labels and then puts its neighbors on the stack. If it has
visited the junction, it checks whether any of its labels
conflict with all possible labels at any neighboring junction,
deleting any offending labels from the current junction. If a
conflict occurs, it puts all the neighbors of the current
junction on the stack. The procedure stops when no junction has
labels which conflict with all of the labels of any of the
neighboring junctions.

Waltz's procedure uses local conflict resolution to prevent
the reprocessing of junctions that are not involved in conflicts.
We argue that cartographers use similar strategies for resolving
name placement conflicts on maps. When a cartographer encounters
insufficient space for labeling a map feature, he or she will
adjust the labels of other features in the local area until all
of the labels, including the current one, are in suitable
locations. Since the cartographer may wish to reserve placements
for important or difficult to place features, it is likely that
he or she will adjust the labels of other local features with
fewer constraints. If the cartographer cannot generate sufficient
space to place the current feature through adjustment, he or she
must delete the current feature or one or more of its neighbors.
The cartographer will likely delete the feature or features of
the least importance for the purpose of the map.

The following algorithm makes use of local conflict
resolution, measures of feature importance and local labeling

67

constraints to automatically place point features and their
labels on maps.

An Algorithm for Placing Point Names

To find the proper name placements for point features:

1 Form a stack of all point features, ordered by their degrees
of freedom.
2 Until the stack is empty:
2.1 Remove the top element from the stack. Call it the
current feature.

2.1.1 If the current feature has never been visited,
assign it the best placement under any arbitrary
ranking system. Note a change has occurred.
2.1.1.1 while the current placement of the

current feature overlaps another point

feature, move the current placement to

the next best placement.

Record interfering features.

2.1.1.2 If no position can be found to place the

name:

2.1.1.2.1 For every placement with no
features of greater
importance than the current
feature, count the number of
interfering features at each
placement.

2.1.1.2.2 If every placement contains a
feature of equal or greater
importance than the current
feature, delete the current
feature. Note a change has
occurred.

2.1.1.2.3 Otherwise, delete all features
at the interfering placement
and place the current feature
there. Note a change has
occurred.

2.1.2 Otherwise, if the current placement of the
current feature overlaps the current placement of
a neighboring feature, update the current
placement for the feature of lesser importance.
Note a change has occurred. If no more
placements exist for the feature of lesser
importance, delete it. Note a change has
occurred.

2.2 If a change has occurred, put the neighbors of the
changed feature on top of the stack.
3 For every feature, label the feature by inspecting its
current placement.

68

We begin by reading a file containing information about the
point features. For each feature we read its name, location,
point size of its label and a measure of its importance. For the
current example we will use population figures to assign relative
importance to point features. We then compute the area of the
polygon surrounding the feature such that all possible label
placements for the feature fall within the polygon. Following
Freeman and Ahn, we then sort the record by the area of its
polygon (Freeman and Ahn, 1984). We repeat this process until we
come to the end of the file.

Having read and sorted the feature information, we hold it
for processing in a stack data structure. Conceptually, a stack
is a list of data open at only one end for processing. We can
both add information to the stack and remove it for inspection.
The last element of information that we "push® on the end of the
stack will be the first element that we "pop" off for inspection.

We begin the placement procedure by popping the endmost
feature from the stack. Calling it the current feature, we first
determine whether we have visited the feature previously as a
current feature. If not, we assign it the best placement
possible under whatever criteria for placement we choose and note
that a change has occurred. The present criteria is a slight
modification of one that Yoeli has proposed, consisting of eight
possible label positions with associated rankings of goodness
(see figure 1).

I I I

2 - 1 : !

i : i 7
E B i y
i 6 * 5 : : .
H | ¢ f

) i

i P | 8
| 4 i | 3
: b 3

Figure 1. Ranking of point feature placements (from Yoeli, 1972)

Having started by placing the label at its best location, we
check whether that placement will overlay any of the point
symbols for features that are on the stack. Without removing the
features from the stack, that is, without disturbing the position
of the stack pointer, we check whether the placement polygon of
the current feature intersects the polygon of any of the other
features on the stack. For any intersecting feature, we record
its name and check whether the current placement will overlay the
point symbol of the conflicting feature. If so, then we move the
placement of the current feature to the next best placement. We
continue checking for point symbol overlaps until we find a
placement with no conflicts or until we eliminate the last
placement. Upon eliminating the last placement, we try again,
beginning at the best placement, by cycling through the
placements, counting the number of overlaps at each location and
checking the importance of the features that interfere with the
current feature at each placement. We then identify the
placement having the least number of conflicts and containing no
feature of greater or equal importance than the current feature.
We delete those features within that placement and substitute
them with the label for the current feature. If we can not fi

AQ

: placement for the current feature that meets both of these
‘riteria, then we delete the current feature. Because the
:lgorithm selectively deletes features that it cannot place, we
lo not need to store multiple, scale dependent data bases.

If we have visited the current feature previously, we check
O see if its current placement interferes with one or more of
he placements of its neighbors. If so, we resolve the conflict
y moving the placement of the feature of lesser importance,
gain checking whether this new placement interferes with
eighboring point symbols. If the feature to be moved is already
abeled at its worst placement, then delete that feature.
uture versions of the algorithm may update the more important
eature if the less important feature is at the worst placement.
t may also reduce the point size of a feature if the reduction
ould not interfere with the analogical function of the
ettering. If we have moved a placement or deleted a feature
hen we note that a change has occurred.

Because the resolution of a labeling conflict may create
ther labeling conflicts within the neighborhood of the changed
eature, we must sort the neighbors of the changed feature and
ush them back onto the stack if they are not there already.
ere we encounter elements of both backtracking and local
rocessing. We often find that map space constraints prevent us
rom implementing our heuristic of placing every feature at its
est location. We must occasionally backtrack and move
lacements to fit other features. By only considering features
n the neighborhood of the changed feature, we avoid reprocessing
eatures that have nothing to do with the current conflict., We
ould not expect a cartographer to reposition labels in areas of
he map representing sparsely populated places to resolve
ibeling conflicts in densely populated areas.

Current Implementation and Results

" An implementation of the algorithm in the C programming
inguage is currently operating on a Digital Equipment VAX 780
inicomputer, a Sperry 7000/40 minicomputer and an IBM-AT
icrocomputer at the University at Buffalo. Both the VAX and
Jerry computers are running the Berkeley UNIX 4.3 operating
rstem. The IBM-AT is running the Microsoft XENIX operating
;stem. 1The implementations for each of the three computers are
entical.)

We used a Compugraphics MCS Power View 10 computer
rpesetting system to generate the accompanying diagrams. We
merate character strings within the name placement program that
'rrespond to operating system commands on the typesetter. We
len download the program output with the typesetter commands and
acement information to a floppy disk. The floppy disk is then
ansferred manually to an IBM-XT microcomputer which serves as a
‘ta link to the typesetter. After running a translation program
I the typesetter to remove carriage returns and other
interpretable control characters from the file, we phototypeset

70

i

the information. The program output includes the name of the
place, its location, the location of its label and its point
size.

The input data currently consists of 44 towns from Monroe
County in New York. We digitized the 1ocat;ons of the towns from
a road map on a scale of 0 to 10,000 digitizer units on both the
X and Y axes. By using 5 significant digits to thg left of the
decimal, we avoid performing floating point multiplication or
division upon the data. After it has performed all of the
computations, the program translates the output coordinates to
picas and points for the typesetter.

We are currently planning to acquire a digital gazetteer of
the populated places of New York. Until we are able to use a
data set of this magnitude as input, we are largely unable to
comment on program performance factors. .However, we note that
running times, though notoriously unreliable on time sharing
systems, are relatively constant over a wide range of scales.
Therefore, we expect that running times using larger data sets
will rise linearly with the number of features. Running times on
all 3 computers average under 3 seconds of real time for
processing the 44 name data set.

Directions for Further Research

This algorithm for the placement of point features
demonstrates the feasibility of using constFa}nts, local
processing, and backtracking techniques to efficiently place
point features. We expect to successfully apply the same

. techniques to place line and area features as well. Like Freeman

and Ahn, we intend to place area features before point features,
given that constraints on the placement of area features are
generally more severe than those on point features. We will
place linear features last.

Because the algorithm will place point features after area
features, it must make the positions of the area names available
to the point placement procedure. Rather than treating the area
names as contiguous wholes, the algorithm will record_the
positions of the letters of the area names as rectangles of fl.xed
positions. Whenever the placement of a pqint feature conflicts
with the placement of an area name, the point feature label will
always be moved, regardless of its importance. We will likewise
make the positions of area and point names to the line placement
procedure.

Acknowledgements

David Mark of the Department of Geography at the University
at Buffalo offered many helpful comments during the development
of the algorithm and its implementation. Greg Theisen of the
University at Buffalo Cartographic Laboratory provided invaluable
asgistance with the typesetter-microcomputer interfaces.

N Hamon

Mantou Beach
.

% Walker Hdlun S Grand Vs Bemh
Fama Comer G ilrome TSR
- . Sea Brevie
At . .
Brockport ' e, e Webster
W, Sweden Rochester
Churchville Pittsford
. W Chi .
Faupt
. Riga *
* Scottsville , Vandon
Mumford
s, , Honeyoye Falls

.
N Beomivid

igure 2. Placement of point features for Monroe County, New
York. Minimum point size of 6 and maximum point
size of 16 before reduction.

.N.HamM1
» Manitou Beach
Walker |
Hilton
Clarkson Gieads

W. Swed 'Webster
. weden)
" Rochester

: Pittsford
. Churchville

_Clifton Egypt
Mumford sy

'Honeyovye Falls

'igure 3. Minimum point size of 22 and maximum point
size of 40 points before reduction.

12

References

Ahn, J., 1984. "Automatic Name Placement System.” Doctoral
Dissertation, Image Processing Laboratory, Rensselaer
Polytechnic Institute, Troy, New York.

Cromley, Robert G., 1985. "an LP Relaxation Procedure for
Annotating Point Features Using Interactive Graphics.”
Proceedings, Auto-Carto 7. Falls Church, Virginia:
American Society of Photogrammetry and American Congress on
Surveying and Mapping.

Freeman, H. and J. Ahn, 1984. "Autonap--An Expert System for
Automatic Name Placement." Proceedings, First International
Symposium on Spatial Data Handling. Zurich: Geographical
Institute, University of Zurich.

Hirsch, S. A., 1980. "Algorithms for Automatic Name Placement of
Point Data.®” Master's Thesis, Department of Geography,
State University of New York at Buffalo, Buffalo, New York.

Imhof, E., 1975. "Positioning Names on Maps." The American
Cartographer, vol. 2, no. 2, pp. 128-144.

Lewis, G. E., 1982. "Automated Point Labeling for Geographic
Data Bases." Master's Thesis, Department of Geography,
Western Washington University, Bellingham, Washington.

pfefferkorn, C., D. Burr, D. Harrison, B. Heckman, C. Oresky and
J. Rothermel, 1985. "ACES: A cartographic Expert System."
Proceedings, Auto-Carto 7. Falls Church, Virginia:
American Society of Photogrammetry and American Congress on
Surveying and Mapping.

Waltz, D., 1975. "Understanding Line Drawings of Scenes with
Shadows,” The Psychology of Computer Vision, ed. P. H.
Winston. New York: McGraw Hill Book Company.

Winston, P. H., 1984. Artificial Intelligence. Reading,
Massachusetts: Addison Wesley Publishing Company.

Yoeli, P., 1972. "The Logic of Automated Map Placement." [The
Cartographic , vol. 9, no. 2, pp. 99-108.

73

Kelly, P. C., 1980. “Automated Positioning of Feature Names on
Maps.” Master's Thesis, Department of Geography, State
University of New York at Buffalo, Buffalo, New York.

