Undergraduate Research Opportunities in Cell Biology

Fuchs Laboratory

Lab Website

My lab is interested in the following questions: How is ribosome composition altered in cells during stress and during a viral infection? How does ribosome composition regulate how much and which proteins are synthesized? Are ribosomes in cancer cells different from ribosomes in healthy cells? Cab we use ribosome modifications to identify novel biomarkers for early cancer detection?

Herschkowitz Lab

Lab Website

The research in my laboratory involves integrative approaches, utilizing multidisciplinary techniques including methods in molecular biology, cell biology, mouse models, histology, microscopy, flow cytometry, genomics, bioinformatics and systems biology to elucidate the molecular mechanisms involved in breast cancer progression and therapeutic resistance. Evidence from our laboratory and others has shown that there exist cells within tumors that have an intrinsic resistance to radiation and chemotherapeutics compared to the bulk of the tumor. These cells, often referred to as cancer stem cells (CSCs) or tumor initiating cells may also be responsible for metastatic dissemination and tumor dormancy and recurrence. Breast CSCs can have an epithelial to mesenchymal transition (EMT) phenotype and inducing EMT in human mammary epithelial cells can confer on them the properties of stem cells. In addition, we identified an aggressive molecular subtype of breast cancer that is enriched for CSCs. In recent years it has been appreciated that along with protein coding genes, much of our genome encodes tens of thousands of functional RNAs that do not make proteins. This includes small RNAs called microRNAs which have been very well studied as well as a large class of long noncoding RNAs (lncRNAs) the functions of which still very much need to be explored. We hypothesize that lncRNAs play a critical role in an EMT gene expression program governed in part by RNA-mediated epigenetic regulation leading to resistance to conventional therapies in breast cancer. Our goal, using several model systems, is to first identify and then investigate the mechanisms of action of lncRNAs that regulate the EMT/CSC phenotype of claudin-low breast tumors using siRNA or antisense knockdown, CRISPR genome engineering, and lentiviral overexpression in cell culture and in animal models.

Larsen Lab

Lab Website

My lab is interested in deciphering the molecular mechanisms controlling branching morphogenesis, which is a process required for the development of many mammalian organs, including the lung, kidney, prostate, mammary glands, and salivary glands.

Lennartz Lab

Lab Website

Macrophages play a major role in health and disease. Our research focuses on the cell biology of macrophages, using an IgG-phagocytosis system to model uptake and killing of pathogens and to study the underlying causes of heart disease. Using viral vectors to deliver signaling molecules to macrophages, we are studying the pathways linking the IgG receptor to gene activation. We use real time imaging to follow uptake of particles (pathogens or IgG-coated articles) and the movement of signaling molecules during this process. We also have an animal model that we are using to study the pathology of stroke and the role of macrophages and Fc receptors in plaque rupture. Techniques being used include immunofluorescence, electron microscopy, and confocal imaging. These projects use macrophages to bridge the fields of cell and molecular biology, immunology, microbiology, and medicine.

Pager Lab

Lab Website

The Pager lab is interested in the interaction and mechanisms by which RNA viruses subvert the cellular RNA metabolism pathways. We are particularly intrigued by how flaviviruses such as hepatitis C virus and Dengue virus commandeer the host’s mRNA storage and decay machinery to successfully establish an infection.

Reliene Laboratory

Lab Website

The focus of the lab is on translational cancer research on gene-environment and gene-nutrient interactions. We investigate whether mutations in DNA repair genes enhance susceptible to cancer associated with environmental causes and whether the risk of cancer can be reduced with intake of dietary antioxidants. For example, we are currently exploring the concept that antioxidant-rich pomegranate extract protects against breast cancer. Other projects include studies on genotoxic and cancer risks of engineered nanoparticles used in consumer products. We use genomic technologies in combination with cell and molecular biology and whole animal approaches to dissect the complexity of cancer.

Shi Laboratory

Lab Website

Areas of interest: molecular and cellular biology of transcription and signal transduction, aptamer-mediated multi-pathway control in living cells and organisms, and drug discovery and development for cancer

Szaro Laboratory

Lab Website

Areas of interest: Developmental neurobiology, molecular neurobiology, neural regeneration, neurofilaments, axonal growth, and xenopus laevis embryology

The Agris Laboratory

Lab Website

Research interests: Structure/function relationships of nucleic acids, RNA-targeted drug discovery, Novel RNA-based antimicrobial targets, Roles of modified nucleosides in tRNA, Nuclear magnetic resonance (NMR) of RNA, RNA-RNA and RNA-protein interactions

The Scimemi Lab

Lab Website

In our lab, we are interested in understanding the functional properties of central synapses, the specialized structures that convert the electrical activity of a neuron into a chemical signal for its target cells. We want to understand how individual molecules are distributed within the synapse and how their spatial arrangement influences the properties of neurotransmitter release. We want to know how neurotransmitters diffuse outside of the synapse and generate long-distance signals to different cells. Our ultimate goal is to gain insights into the functional consequences of changes in synaptic function associated with the onset of different neuropsychiatric and neurodegenerative disorders.