Protecting your Vaccine: Protecting Your Patients

Guest Speakers
Patricia Beckenhaupt, RN, MS, MPH
Public Health Analyst
National Center for Immunization & Respiratory Diseases, Vaccine Supply and Assurance Branch (VSAB), Centers for Disease Control
Debra S. Blog, MD, MPH
Director
Bureau of Immunization
New York State Department of Health

Thank You to our Sponsors
• School of Public Health, University at Albany
• NYS Department of Health
• NYS Community Health Partnership
Special Thanks to
• NYS Association of County Health Officials
• NYS Nurses Association

Viewer Call-In
Phone: 800-452-0662
Fax: 518-426-0696

Evaluations
Please visit www.phlive.org to fill out your evaluation and post test. Nursing Contact Hours, CME, CHES are available.

Thank you!
Disclosures

The Speaker is a federal government employee with no financial interest or conflict with the manufacturer of any product named in this presentation.

No off-label use of vaccines will be discussed.

The speaker will not discuss vaccines currently not licensed by the Food and Drug Administration.

Learning Objectives

- Identify the financial and practical cost of vaccine mishandling
- Explain the roles and responsibilities of nurses in protecting vaccines from storage errors and mishandling
- Identify critical components of a vaccine storage and handling emergency plan

Vaccines Have Great Value

- Monetary
- Disease Prevention
- Public trust in vaccines
- Public trust in healthcare

Comparison of 20th Century Annual Morbidity and Current Morbidity: Vaccine-Preventable Diseases

<table>
<thead>
<tr>
<th>Disease</th>
<th>20th Century Annual Morbidity</th>
<th>2009 Reported Cases</th>
<th>Percent Decrease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smallpox</td>
<td>28,005</td>
<td>0</td>
<td>100%</td>
</tr>
<tr>
<td>Diphtheria</td>
<td>21,053</td>
<td>0</td>
<td>100%</td>
</tr>
<tr>
<td>Measles</td>
<td>530,217</td>
<td>61</td>
<td>> 99%</td>
</tr>
<tr>
<td>Mumps</td>
<td>162,344</td>
<td>982</td>
<td>99%</td>
</tr>
<tr>
<td>Pertussis</td>
<td>206,752</td>
<td>13,506</td>
<td>93%</td>
</tr>
<tr>
<td>Polio (paralytic)</td>
<td>16,316</td>
<td>0</td>
<td>100%</td>
</tr>
<tr>
<td>Rubella</td>
<td>47,745</td>
<td>4</td>
<td>> 99%</td>
</tr>
<tr>
<td>Congenital Rubella Syndrome</td>
<td>152</td>
<td>1</td>
<td>99%</td>
</tr>
<tr>
<td>Tetanus</td>
<td>580</td>
<td>14</td>
<td>98%</td>
</tr>
<tr>
<td>Neisseria influenzae</td>
<td>28,000</td>
<td>245</td>
<td>99%</td>
</tr>
</tbody>
</table>

*Source: JAMA. 2007;298(18):2155-2163
† † Source: MMWR. January 8, 2010;58(51,52):1458-1468. (provisional, 2009 week 52 NNDSS data)
*25 type b and 218 unknown (<5 years of age)

Comparison of Pre-Vaccine Era Estimated Annual Morbidity or Mortality with Current Estimate: Vaccine-Preventable Diseases

<table>
<thead>
<tr>
<th>Disease</th>
<th>Pre-vaccine Era Annual Estimate</th>
<th>2008 Estimate</th>
<th>Percent Decrease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hepatitis A</td>
<td>117,333</td>
<td>11,049</td>
<td>91%</td>
</tr>
<tr>
<td>Hepatitis B (acute)</td>
<td>66,232</td>
<td>11,269</td>
<td>83%</td>
</tr>
<tr>
<td>Pneumococcus (invasive)</td>
<td>44,000</td>
<td>4,167</td>
<td>99%</td>
</tr>
<tr>
<td>all ages</td>
<td>63,067</td>
<td>7,500#</td>
<td>88%</td>
</tr>
<tr>
<td>< 5 years of age</td>
<td>16,067</td>
<td>1,314</td>
<td>98.9</td>
</tr>
<tr>
<td>Rotavirus</td>
<td>4,005,126</td>
<td>449,363</td>
<td>99.0</td>
</tr>
</tbody>
</table>

* Source: JAMA. 2007;298(18):2155-2163
† Source: CDC. MMWR. February 6, 2009 / 58(RR02);1-25
II Source: Active Bacterial Core surveillance
Source: New Vaccine Surveillance Network

Comparison of Pre-Vaccine and Current Reported Morbidity of Vaccine-Preventable Diseases, United States

<table>
<thead>
<tr>
<th>Disease</th>
<th>Pre-vaccine Era*</th>
<th>2008**</th>
<th>% decrease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diphtheria</td>
<td>175,885</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Measles</td>
<td>503,282</td>
<td>132</td>
<td>99.9</td>
</tr>
<tr>
<td>Mumps</td>
<td>152,209</td>
<td>376</td>
<td>99.8</td>
</tr>
<tr>
<td>Pertussis</td>
<td>147,271</td>
<td>9,499</td>
<td>93.5</td>
</tr>
<tr>
<td>Polio (paralytic)</td>
<td>16,316</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Rubella</td>
<td>47,745</td>
<td>17</td>
<td>99.9</td>
</tr>
<tr>
<td>Congenital Rubella Syndrome</td>
<td>823</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Tetanus</td>
<td>1,314</td>
<td>15</td>
<td>98.9</td>
</tr>
<tr>
<td>H. influenzae type b and unknown (<5 yrs)</td>
<td>20,000+</td>
<td>344</td>
<td>98.3</td>
</tr>
<tr>
<td>Total</td>
<td>1,064,854</td>
<td>10,383</td>
<td>99.0</td>
</tr>
</tbody>
</table>

* Baseline 20th century annual morbidity
** Source: MMWR 2008;57(52);provisional
Consequences of Handling and Storage Errors

- Patient care, risk, and liability.
 - A patient is not fully protected if the patient is immunized with a vaccine that is not stored and handled correctly.
- Vaccine Cost.
 - Replacement vaccine costs are burdensome in terms of money and time.
- Loss of trust.
 - Can a practice or the VFC afford the loss of patient confidence?

How much money is in your storage unit?

<table>
<thead>
<tr>
<th>Vaccine</th>
<th>Private Cost</th>
<th>VFC Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Box of Varicella</td>
<td>$805.80</td>
<td>$670.81</td>
</tr>
<tr>
<td>Two boxes of Varicella</td>
<td>$1476.61</td>
<td></td>
</tr>
</tbody>
</table>

Total Cost = $10558.99

Total Cost of Storage Unit’s Contents = $12035.60
Based on July 16, 2010 Pricing

Calculate The Value Of Your Vaccines

of Doses x $Private/Public = Total $ value

Example - Pediatric

- DTaP x 23.75/14.15 =
- Hep A x 30.31/13.50 =
- MCV x 103.42/79.75 =

Example - Adult

- Hep A x 63.10/21.59 =
- Hep B x 52.50/28.00 =

For additional information on vaccine pricing:
http://www.cdc.gov/vaccines/programs/vfc/cdc-vac-price-list.htm

Source: Michigan Immunization Program

Current Problem

- CDC administers ~ $3 billion of vaccine through Vaccines for Children (VFC) program each year
- A meta analysis estimates that 14 to 35% of delivered vaccines are subject to inappropriate storage temperatures
- Storage temperature control is vital to maintaining vaccine potency
- Storage outside 2°C to 8°C range can render vaccines ineffective
- A meta-analysis estimates 14 to 35% of delivered vaccines are subjected to inappropriate storage temperatures
- Social and economic costs of improperly stored vaccines
 - Cost of manufacturing and delivering vaccine wasted
 - Vaccine delivery delayed
 - Reported vaccination rates are erroneously high
 - Recipients are not protected

$3 B/yr program X 30% loss due to known thermal excursions = $900 M/yr loss

NYS Vaccine Cost

(Projected 2008 Upstate Public & Private Patients*)

Reported problems with Storage and Handling

- 82%** of VFC/CHP Practices in NYS with 1 storage problem.*NYS DOH site visit data based 2008

** Typical problems:
- Thermometers missing from 1 or more refrigerator/freezer.
- No thermometer and complete log for all compartments
- 1 or more freezers measured too warm
- Refrigerator too cold (1°C or lower) (2°C or lower)
- Refrigerator too warm (9°C or higher)
- Expired vaccines found in cold storage but not labeled

*Source: NYSDOH Vaccine Program, Census Data
“This is a substantial problem that needs to be addressed through prevention…”

- 12%* of VFC/CHP practices with refrigerator and/or freezer out of range at the time of visit.

- At 12% vaccine annual vaccine loss due to storage and is:
 - State (12% of 224 million) = $26,900,000
 - Private = 15.6 million
 - Public = 11.3 million

*2008 NYS Site Visit Database

Oversight and Accountability By The Vaccine Program (Vaccines for Children Program)

- Managing publicly funded vaccine is one of the most important activity conducted by Immunization Programs!!
- Provide education and support.
- Promote high standards for vaccine storage and handling.
- Provide oversight and accountability as responsible caretaker of public funds.

The Cost of Revaccination

- When you DO catch it

- When you DON’T catch it

The Cost of Revaccination

- Risk of vaccine preventable disease
- Staff time in determining affected patients
- Patients/parents make ultimate decision on revaccination
- Contacting patients and media

Number Of Vaccines In The Routine Childhood Immunization Schedule Has Increased

```
1985 (7) | 1995 (10) | 2005 (14) | 2009 (16)
Measles | Measles | Measles | Measles
Rubella | Rubella | Rubella | Rubella
Mumps | Mumps | Mumps | Mumps
Diphtheria | Diphtheria | Diphtheria | Diphtheria
Tetanus | Tetanus | Tetanus | Tetanus
Pertussis | Pertussis | Pertussis | Pertussis
Polio | Polio | Polio | Polio
Hib (Infant) | Hib (Infant) | Hib (Infant) | Hib (Infant)
Hepatitis B | Hepatitis B | Hepatitis B | Hepatitis B
Varicella | Varicella | Varicella | Varicella
Pneumococcal Disease | Pneumococcal Disease | Pneumococcal Disease | Pneumococcal Disease
Influenza | Influenza | Influenza | Influenza
Meningococcal | Meningococcal | Meningococcal | Meningococcal
Hepatitis A | Hepatitis A | Hepatitis A | Hepatitis A
HPV | HPV | HPV | HPV
Rotavirus | Rotavirus | Rotavirus | Rotavirus
```

Vaccines Can Be Destroyed By Too Hot, Too Cold, Too Long Out Of Correct Temperature

- Source: CDC Storage and Handling Toolkit
How A Refrigerator Works

DORM-STYLE REFRIGERATOR
• Consistently unacceptable performance, regardless of vaccine storage location
• Placement on/near floor, cooling Dormitory-Style Refrigerators
and freezer unit further reduces temperature stability
• No “good” storage area
The dorm-style refrigerator is NOT recommended for vaccine storage under any circumstance!

There Are Just A Few Critical Points In The Cold Chain You Need To Remember
• Goal: to keep vaccine cold throughout its lifespan
• Focus: the Provider’s Office or clinic
• Storage Units
• Assuring temperatures that keep vaccines viable
• The importance of plans

The Immunization Logistics System
Four things to remember

- Trained personnel
- Reliable Equipment
- Monitoring
- Written plan

Vaccine Storage Equipment

Be sure your storage unit is:

- in good working order
- able to maintain required temperatures year round
- dedicated to storage of vaccines

Temperature Monitoring

Use only certified, calibrated thermometers

Record temperatures twice daily and store temperature logs for at least 3 years

Source: CDC Storage and Handling Toolkit

Vaccine Management Plans

Keep The Refrigerator Working: Take Preventive Measures

- Use a plug guard or safety-lock plug
- Post a warning sign at the plug and on the refrigerator
- Label fuses and circuit breakers
- Install a temperature alarm

Examples

- Writing down wrong temps but not realizing they are wrong or ignoring that they are wrong.
- Not using logs that show out-of-range temps.
- Writing down the same temperature day after day.
- Confusing Fahrenheit and Celsius.
- No temperature monitoring.
- Use of dorm style refrigerator.
- Not setting a lower alarm on electronic monitoring systems.

Source: CDC Storage and Handling Toolkit
Examples Continued

- Confusing negative and positive temperatures
- Checking temperatures only once per day

Criteria for Handling and Storage Mishaps

- The errors range from small practices to large.
- Public and private.
- A few days to a few years.
- Many have involved recalling thousands of patients for reimmunization.

Develop A Vaccine Emergency Plan (1)

- Designate personnel / 24-hour to respond
- Have a system to notify you and/or your back up person
- Assure proper storage and handling of vaccines during an emergency.
- Identify an alternate power source and procedures that allow access to alternate facilities
- Keep a cooler in the office; place a copy of the Emergency Response Plan Worksheet in the cooler.
Develop A Vaccine Emergency Plan (2)

- DO NOT automatically discard the vaccine that has been compromised. Mark and store separately in refrigerator
- Call state or local health department for further instructions

What Happens When A Series Of Unfortunate Events Meets The Perfect Vaccine Management Plan?

Technology vs. Human Factor:
The problem of relying heavily on technology without recognizing the need and benefit of human interaction and involvement.

What NYSDOH is Doing

- Handling and Storage Plan
 - Delineates responsibilities of the practice
 - Must be signed
- Site Visits
- Establishing internal policies and procedures
- Education
- Requiring submission of temperature logs once per year for review

NYSDOH Vaccine Storage and Handling Plan

- Designate a vaccine coordinator and backup
- Store vaccine properly
 - Follow proper storage procedures
 - Use appropriate freezer, refrigerator and temperature monitoring equipment

NYSDOH Vaccine Storage and Handling Plan

- Monitor Temperatures- NYSDOH requirements
 - Monitor temperatures twice daily
- Use the IAC logs that clearly show when temps are out of range
- Follow appropriate vaccine mishap policies and procedures
- Call the NYSDOH Vaccine Program
Education

- Provider Manual
- Handling and Storage Guidelines for Staff
- Webinars-planned
- Requiring temps log submission once per year and more often as required (both education and monitoring)
- Considering future requirements of payment for lost vaccine

Manage Vaccine Safely

- Role of Clinician in Vaccine Safety:
 - Screen for contraindications/precautions
 - Communicate vaccine risks/benefits
 - Proper administration
 - Manage possible vaccine reactions
 - Assure proper vaccine storage and handling at the practice level
 - Document and report vaccine adverse events.
- Provide Leadership and Commitment

"Never forget that getting big things done all year long isn't about magic. It's about leadership."

Santa

Resources Available Online

- CDC Storage and Handling Toolkit http://www2a.cdc.gov/vaccines/ed/shtoolkit/default.htm
- NIPINFO nipinfo@cdc.gov
- Pink Book http://www.cdc.gov/vaccines/pubs/pinkbook/default.htm
- ACIP General Recommendations http://www.cdc.gov/vaccines/pubs/acip-list.htm
- Immunization Action Coalition http://www.immunize.org/

Special Thank You To

- Oregon Immunization Program
- Michigan Immunization Program
- New Jersey Department of Health & Senior Services, Vaccine Preventable Disease Program
- National Institute of Standards & Technology
- Colorado Department of Public Health & Environment, Immunization Program
- California Immunization Program
- University at Albany, School of Public Health, Center for Public Health Continuing Education
Thanks

- Gary Rinaldi-NYSDOH
- Patricia Moran-NYSDOH
- Susan Flavin-NYSDOH
- Betsy Rausch-Phung-NYSDOH
- Tony Richardson-CDC

Evaluations

Please visit www.phlive.org to fill out your evaluation and post test. Nursing Contact Hours, CME, CHES are available.

Thank you!