Nursing Contact Hours, CME and CHES credits are available.

Please visit www.phlive.org to fill out your evaluation and complete the post-test.

Thank You to Our Sponsors

- University at Albany School of Public Health
- New York State Department of Health

Conflict of Interest & Disclosure

- The planners and presenters do not have any financial arrangements or affiliations with any commercial entities whose products, research or services may be discussed in this activity.
- No commercial funding has been accepted for this activity.

Featured Speaker

Donald P. Frush, MD, FACR FAAP
Professor of Radiology
Duke University Medical Center
By the end of this program, viewers will be able to:

- Describe pediatric radiation dose resulting from CT relative to other radiation exposures
- Identify dose management strategies for CT
- Recognize strategies for discussing salient information on potential radiation risks from medical imaging with patients and families

Effect of X-rays on Hair: Then

New York Times, August 2010

- 100 mSv dose - general threshold for cancer risk

Effect of X-rays on Hair: Now

New York Times, August 2010

Typical Medical Radiation Doses (mSv)

<table>
<thead>
<tr>
<th>Type of test in 5 year-old</th>
<th>Radiation dose</th>
<th>CXR equiv.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-view ankle</td>
<td>.0015</td>
<td>1/14th</td>
</tr>
<tr>
<td>2-view chest</td>
<td>.02</td>
<td>1</td>
</tr>
<tr>
<td>TC-99m radionuclide gastric emptying</td>
<td>.06</td>
<td>3</td>
</tr>
<tr>
<td>TC-99m radionuclide cystogram</td>
<td>.18</td>
<td>9</td>
</tr>
<tr>
<td>TC-99m radionuclide bone scan</td>
<td>6.2</td>
<td>310</td>
</tr>
<tr>
<td>FDG PET CT</td>
<td>10-15</td>
<td>750</td>
</tr>
<tr>
<td>Fluoroscopic cystogram</td>
<td><.33</td>
<td>16</td>
</tr>
<tr>
<td>Chest CT</td>
<td>Up to 3</td>
<td>150</td>
</tr>
<tr>
<td>Abdomen CT</td>
<td>Up to 5</td>
<td>250</td>
</tr>
</tbody>
</table>

Low-level Radiation Risks

- 100 mSv dose - general threshold for cancer risk

Multidetector CT in the U.S.

- 82,000,000 examinations per year
- If 50% involve two phases, there are 120,000,000 “dose events” per year
- Factoring 1 CT for every 2.6 people per year, with US population in 2010 at 310 million

 Conservative Estimate = 1 CT for every 9.6 people
All Exposure Categories

- **Radon & Other Background**: 37%
 - CT: 24%
 - Nuclear Medicine: 12%
 - Interv. Fluoroscopy: 7%
 - Conv Rad/Fluoro: 5%
 - Space: 5%
 - Internal: 5%
 - Consumer: 2%
 - Occupational: <0.1%
 - Industrial: <0.1%

Why So Much? It’s Complicated

- The medical/scientific imaging community
- Manufacturers/industry
- Non-radiologists
- Healthcare payers
- Government
- Health policy makers
- Administration
- Lawyers
- Public
- Patient
- Parents/caretakers
- Media

CT Benefits: Dx of Appendicitis

- **Among 2005 JAMA review of many medical specialists:**
 - 93% practiced defensive medicine
 - 43% used imaging technology in clinically "unnecessary" situations

Financial Interest & Utilization

- Bhargavan et al., June 2011
- Mean images/episode by physicians with financial interest in modality to mean for physicians without
 - CT: 2.56
 - MRI: 1.40
 - Nuclear medicine: 1.38
 - Ultrasound: 1.41
 - Radiography: 1.11
 - All modalities: 1.72

Defensive Medicine & Malpractice

- Among 2005 JAMA review of many medical specialists:
 - 93% practiced defensive medicine
 - 43% used imaging technology in clinically “unnecessary” situations

We Do A Lot in Kids

- 161,864 (6%) DIR studies in children:
 - 8% head
 - 5% AP
 - 2% chest
- 11-18 year olds received:
 - 56% of brain scans
 - 72% of AP
 - 63% of chest
Dose Estimates

- Doses Vary - a Wide Range of Estimates
- CT dose can be relatively high
- Scanning is not infrequent in kids
- Similar scans or doses can vary substantially

Implications

- CT dose can be relatively high
- Scanning is not infrequent in kids
- Similar scans or doses can vary substantially

Public Perceptions

- “...about 1500 of those [children] will die later in life from radiation induced cancer...”
- USA Today 2001

“...We Are Giving Ourselves Cancer”
- Illustration: Ben Jones
- January 30, 2014

Communicating Risk

- Medical Literature Can Be Confusing
 - Low level radiation (e.g., CT) is beneficial
 - Low level radiation is killing us
 - Risk of low level radiation is uncertain

Communicating Risk

- New data shows risk in children greater for 30% of cancers, equal to adults in 25%, and less than adults in 10%. The rest - 35% - is unknown
- Estimated: atomic bomb data, medical exposure, occupational exposure, environmental exposure
- Debated: may be zero, or may be 1 in 500-10,000 risk from low dose

Why The Debate?
What’s Not Debatable

- Longer lifetime to manifest radiation-induced injury (cancer, cataracts)
- Each exam (dose) considered cumulative
- Same settings: higher dose for children’s tissues (in general) are more vulnerable

Pediatric CT Dose Management

- Other modalities? Always consider ultrasound
- Patient preparation
- Adjust parameters
 - Size
 - Region
 - Indication
 - Don’t ignore impact of IV contrast media
- Avoid/modify multiphase exams (< 5%)
- Limit coverage

Content is Important

What is Image Gently?

- Advocacy Goal:
 - To improve medical radiation protection for children

Members and Organizations

- Over 90 health care organizations/agencies (30+ international)
- Over 1,000,000 participants worldwide: radiologists, technologists, medical physicists, other providers

- Communication campaign
- Social marketing strategy
- Education and awareness

For imaging experts, patients, families, caregivers, referring healthcare providers

Raising Awareness

- Communication Through Social Marketing Strategy
 - Website
 - Campaigns
 - Speakers group
 - Scientific publications
 - Summits
 - Speakers at national meetings
- Parent/provider brochures (with translations)
- Newsletter
- Facebook & Twitter
Uncertainty is challenging to discuss
- Patient/caregiver perspectives are complex
- Low probability of “bad” generally overemphasized
- Many ways to frame relative risks: other radiation, other life events, days lost
- Keep it simple and direct, but anticipate divergence

Risk Communication

Medical (Imaging) Environment
- Potential lack of control (helplessness)
- Unfamiliarity
- Decisions for others
- High anxiety
- Sense of urgency
- Potential consequences
- Limited access

Risk Communication

What do parents hear?
When you say “1 in 2,000 risk of cancer” ...
they hear “my child is at risk”

Communicating with Parents

Clinician Response
- That is a good question
- We know the doses
- We can minimize radiation
- This is a necessary/important exam (avoid “numbers”)

Communicating with Parents

Will You Discourage the Examination?
No, Its OK to Tell Parents
Tenets To Remember

- Imaging (CT) is beneficial
- Patients have rights (autonomy)
- Physicians have responsibility to inform
- Content is important
- Delivery is equally important: who, when, how

Resources

WHO Communication Tool for Health Care Providers (In Preparation)

Resources

- CT is useful
- CT is used frequently
- Radiation exposure is necessary
- Single CT risk uncertain, at most small
- A mindful, reassuring dialogue is important

donald.frush@duke.edu

Conclusions

- Evaluations & Continuing Education: Nursing Contact Hours, CME and CHES credits are available. Please visit www.phlive.org to fill out your evaluation and complete the post-test.
- Conflict of Interest Disclosure Statements: The planners and presenters do not have any financial arrangements or affiliations with any commercial entities whose products, research or services may be discussed in this activity. No commercial funding has been accepted for this activity.

Thank you!