Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Departmental By-Laws</td>
<td>3-7</td>
</tr>
<tr>
<td>B. General policies and Procedures</td>
<td>8-12</td>
</tr>
<tr>
<td>C. MS in Epidemiology</td>
<td>13-18</td>
</tr>
<tr>
<td>D. Thesis, MS Epidemiology</td>
<td>18-22</td>
</tr>
<tr>
<td>E. PhD in Epidemiology</td>
<td>22-29</td>
</tr>
<tr>
<td>F. Core Qualifying Exam, PhD in Epidemiology</td>
<td>30-32</td>
</tr>
<tr>
<td>G. Recommendations for Doctoral students wishing to obtain expertise in Infectious Diseases</td>
<td>33-34</td>
</tr>
<tr>
<td>H. Recommendations for Doctoral students wishing to obtain expertise in Chronic Diseases</td>
<td>35</td>
</tr>
<tr>
<td>I. Recommendations for Doctoral students wishing to obtain expertise in Environmental/Occupational</td>
<td>36-37</td>
</tr>
<tr>
<td>J. Epidemiology Courses</td>
<td>38-43</td>
</tr>
<tr>
<td>K. MS in Biostatistics</td>
<td>44-48</td>
</tr>
<tr>
<td>L. PhD in Biostatistics</td>
<td>49-52</td>
</tr>
<tr>
<td>M. Biostatistics Courses</td>
<td>53-57</td>
</tr>
<tr>
<td>N. MPH Program</td>
<td>58-60</td>
</tr>
<tr>
<td>O. DrPH Program</td>
<td>61</td>
</tr>
<tr>
<td>Appendix</td>
<td></td>
</tr>
</tbody>
</table>
Preamble

The Department of Epidemiology and Biostatistics (hereafter, the Department) consists of regular (unqualified), qualified, and adjunct faculty, professional appointees, staff, and graduate students. As a unit of the School of Public Health (hereafter, the School), the Department seeks to promote the general education of its various student constituencies and the specific education and training and advising of its graduate students, to promote the acquisition and dissemination of knowledge of epidemiology and biostatistics, and to improve public health. The Department offers graduate programs leading to the degrees Master of Science and Doctor of Philosophy.

Article I. The Members of the Department

1. The members of the Department shall include the faculty, professional appointees, staff and graduate students.

2. The Faculty shall include all faculty, including faculty with unqualified appointments and faculty with adjunct or qualified appointments.

2.a. The Faculty shall be responsible for the overall development of the educational program of the Department and for the conduct of the Department’s “instructional, research and service programs.” [Senate Bylaws, Article I, Section 2.1]

2.b. “Voting faculty” are members of the faculty so defined by the Bylaws of the School of Public Health of the University at Albany: “The Voting Faculty shall consist of all persons with unqualified academic appointments in the School.” [Article III, Sections 1.2 and 1.3; Article IV, Section 1].

2.c. Faculty who have adjunct or qualified appointments are individuals with the appropriate professional training and experience who have been provided with official adjunct or qualified status by the University.

2.c.i. Individuals are nominated for adjunct or qualified status by the Department, based on the individual’s potential for contributing to our teaching and research missions. The benefits to the Department from such an appointment must be clearly stated, and achieved if adjunct or qualified status is to be continued. Typical ways that such status carries benefits to the Department are: the development and teaching of courses, the sponsorship of internships, field study and independent research, participation in joint research activities with regular faculty, and membership on committees.

3. Professional appointees shall include the Assistant to Chair of the Department, administrative and research assistants who hold Professional titles as defined by the University, and post-doctoral researchers, for example.

4. The staff shall include regular clerical and/or secretarial professionals.
Article II. Departmental Administrative Personnel

1. The Chair of the Department is the chief administrative officer of the Department.

1a. The Chair is appointed to the position by the President of the University, on the recommendation of the Dean of the School. The Faculty provides the Dean with a recommendation for this leadership position. The Departmental recommendation is based on a vote by secret ballot, with the results tabulated by rank. The vote to recommend a Chair to the Dean will be scheduled at least 6 months before the end of the current Chair’s term. The Department’s Personnel Committee will determine the procedure for the vote, with the approval of the Faculty.

1b. The Chair is the fiscal and administrative officer, and as such is responsible for personnel supervision, curricular oversight, budget management, enrollment management, planning and conducting Departmental meetings, and implementing policies and procedures agreed upon by the faculty and/or provided by higher levels of academic administration.

1b.i. Specific responsibilities of the Chair include supervision of the Assistant to Chair, making recommendations to the Dean regarding allocation of space, distribution of tuition scholarships, consultation with instructors on the selection of teaching assistants, recruiting and mentoring new members of the faculty, and reviewing and ranking departmental applications for School and University programs and initiatives (e.g. FRAP applications, student fellowships and awards, merit pay).

1b.ii. As stated in the bylaws of the School of Public Health {Article VI, Section 1.3}, the Chair will provide the names of individuals from the Department who agree to serve on standing and ad hoc committees of the Council of the School of Public Health. The Chair will also share the view of the Department with the Dean and Chairs of other Departments, and the Chair will report to the Department on news and information regarding the School of Public Health and other parts of the University.

1b.iii. To fulfill the aforementioned obligations, the Chair shall also be responsible for consultation with the Faculty, which is “the process by which advice, suggestions, recommendations or other timely input is utilized in policies. The aim of consultation is to facilitate frank and open dialogue and utilize the knowledge and experience of faculty, administration, staff and students in decision-making.”{University Senate Bylaws, Preamble}. The Chair will also be responsible for facilitating consultation between the Faculty and the administration of the University and the School of Public Health.

1c. The regular term for service as Chair is three years {Policies, 1994, Art. IX, Title C, § 2} and a Chair shall not normally serve for more than two consecutive terms.

2. Two Associate Chairs (one for Epidemiology and one for Biostatistics) shall be responsible for acting for the Chair in her/his absence and for assisting the Chair. The Chair will designate specific responsibilities to the Associate Chairs in the case of her/his absence.

2a. The Dean of the School shall appoint the Associate Chairs, in consultation with the Chair of the Department. The Faculty will provide the Chair with a recommendation for these leadership positions based on a vote by secret ballot, with the results tabulated by rank. The Personnel Committee of the Department will determine the procedure for the vote, with the approval of the Faculty.

2b. The Associate Chairs are responsible for providing curricular and administrative guidance and leadership within the degree programs in Epidemiology and Biostatistics.

2b.i. The specific responsibilities of the Associate Chairs include reviewing the recommendations of the Admissions Committee, coordinating the recruitment of admitted students, working with the Chair in establishing the course schedule and assignment of instructors, monitoring the academic progress of students and approving field placements, theses and dissertations on behalf of the Department.
2.c. The regular term for service as the Associate Chair is two years and an Associate Chair shall not normally serve for more than three consecutive terms.

3. The Assistant to Chair of the Department shall provide administrative support to the Chair, the Associate Chairs and to committees of the Department.

3.a. Specific responsibilities of the Assistant to Chair of the Department include administrative support for recruitment and admissions, the maintenance of Departmental records and materials, the preparation and maintenance of Departmental budgets, and the preparation of files for appointments and promotions. The Assistant to Chair of the Department is also responsible for the supervision of Departmental clerical staff.

Article III: Faculty Governance

1. Faculty Meetings

1.a. The faculty shall meet monthly during the academic year. Additional meetings may take place if special circumstances require.

1.a.i. At faculty meetings, the Faculty shall be informed, given an opportunity to discuss, and vote their approval or disapproval on major decisions that affect the teaching, research and service programs of the Department.

1.b. Faculty meetings may be called by the Chair, by an Associate Chair, or by any group of faculty whose number represents at least 20 percent of the voting faculty.

1.c. The presiding officer for faculty meetings shall be the Chair or his/her appointee.

1.d. Minutes of the faculty meetings shall be kept, and made available to members of the Department.

1.e. Decisions of the faculty that require a faculty vote are determined by majority vote unless otherwise specified. Examples of decisions requiring a faculty vote include (but are not limited to) recommendations for new and continuing appointments to the faculty of the Department; recommendations for promotion in faculty rank; recommendations for changes in the learning objectives, requirements and/or structure of degree programs; and recommendations for Departmental procedures regarding admissions and advisement.

1.f. Forty percent of the voting faculty shall constitute a quorum for issues requiring a faculty vote.

1.g. Faculty, professional appointees, and staff are invited to attend faculty meetings; voting faculty are expected to attend as part of their normal workload responsibilities.

1.h. At each faculty meeting, the Departmental representative to the Council of the School of Public Health will report on activities of the Council.

1.i. Graduate students may be invited to attend faculty meetings for discussion of mutually important items.

2. Departmental Meetings

2.a. There shall be a minimum of one departmental meeting each academic year, to which are invited all faculty, professional appointees, staff, and graduate students.

3. Standing Committees, Membership and Responsibilities

3.a. The standing committees of the Department are: (i) Executive; ii) Epidemiology Admissions; iii) Biostatistics Admissions; iv) Curriculum; v) Academic; vi) Student Affairs; vii) Outreach; (viii) Speakers.
3.a.i. The **Executive Committee** is responsible for assisting the Chair in the administration of the various programs and policies of the Department. The **Executive Committee** shall consist of the Chair, the Associate Chairs, and the Assistant to Chair.

3.a.ii. The Epidemiology **Admissions Committee** is responsible for reviewing applications to the Epidemiology graduate programs of the Department and for making recommendations for the admission or rejection of applicants. The Epidemiology Admissions Committee shall consist of three members of the Epidemiology faculty, with representation across specialty areas or research interests in each discipline. The Chair and Associate Chair of Epidemiology will select members to serve on the committee after soliciting volunteers from the Epidemiology faculty; the committee membership is subject to final approval by the Faculty. The normal term of service will be two years.

3.a.iii. The Biostatistics **Admissions Committee** is responsible for reviewing applications to the Biostatistics graduate programs of the Department and for making recommendations for the admission or rejection of applicants. The Biostatistics Admissions Committee shall consist of three members of the Biostatistics faculty, with representation across specialty areas or research interests in each discipline. The Chair and Associate Chair of Biostatistics will select members to serve on the committee after soliciting volunteers from the Biostatistics faculty; the committee membership is subject to final approval by the Faculty. The normal term of service will be two years.

3.a.iv. The **Curriculum Committee** is responsible for reviewing learning objectives associated with each degree program, recommending curricular changes (e.g. in response to changes in learning objectives), reviewing new course and program proposals or proposed modifications in courses and programs as they influence the curricula, making recommendations regarding the evaluation of teaching, and in general advising the faculty of internal and external curricular initiatives and needs. The Committee shall consist of five members of the faculty, representing both Biostatistics and Epidemiology. The Chair and Associate Chairs will select members to serve on the committee after soliciting volunteers from the faculty; the committee membership is subject to final approval by the Faculty. The normal term of service will be two years.

3.a.v. The **Academic Committee** is responsible for the ongoing review of those aspects of graduate training and evaluation other than formal courses. This includes establishing the criteria and reviewing the proposals for field placements and internships in Biostatistics and Epidemiology, providing guidelines for the format of theses and dissertations, reviewing the process for qualifying and comprehensive examinations, and reviewing guidelines for the advisement of students, and the monitoring of student progress in the graduate programs. The Committee shall consist of five members of the faculty, representing both Biostatistics and Epidemiology. The Chair and Associate Chairs will select members to serve on the committee after soliciting volunteers from the faculty; the committee membership is subject to final approval by the Faculty. The normal term of service will be two years.

3.a.vi. The **Student Affairs Committee** is responsible for addressing specific needs and concerns of the graduate students of the Department. This includes establishing a process for student grievances, assisting students in their search for sources of funding and opportunities for internships, and providing resources for career advisement. The Committee shall consist of four members of the faculty, representing both Biostatistics and Epidemiology, and one student from each Division. The Chair and Associate Chairs will select members to serve on the committee after soliciting volunteers from the faculty and students; the committee membership is subject to final approval by the Faculty. The normal term of service will be two years.

3.a.vii. The **Outreach Committee** is responsible for issues and activities that are external to the School of Public Health. This includes the development and maintenance of the Department’s website and other materials used for information and recruitment, the maintenance of communication with alumni of the Department, and more specifically, the collection of information from alumni to aid in the evaluation and improvement of the Department’s programs. The Committee shall consist of four members of the faculty, representing both Biostatistics and Epidemiology, and one student from each Division. The Chair and Associate Chairs will select members to serve on the committee after soliciting volunteers from the faculty and students; the committee membership is subject to final approval by the Faculty. The normal term of service will be two years.
3.a.viii. The **Speakers Committee** is responsible for arranging a program of speakers for the Department. The Committee shall determine faculty and student interests, find speakers, schedule talks, arrange publicity, manage the reception, and arrange for honoraria, if relevant. The Committee shall consist of one member of the faculty from each Division and one student from the Department. The Chair and Associate Chairs will select members to serve on the committee after soliciting volunteers from the faculty and students; the committee membership is subject to final approval by the Faculty. The normal term of service will be two years.

4. **Ad Hoc and Temporary Committees**

4.a. Temporary committees may be formed as the need arises. Examples of such committees would include those involving equipment purchases; the coordination of specific sets of courses; advice regarding computers or communication; liaisons to other units of the School of Public Health or university; and personnel committees. Membership and responsibilities are on a “needs basis”; committee membership will be subject to final approval by the Faculty. Because of the importance of personnel decisions (tenure and/or promotion), the duties of the personnel committee are detailed below.

4.a.i. Personnel Committees are formed for the purpose of assisting the Department, the Chair, the Associate Chairs, and the candidate in the event of a tenure and/or promotion decision. Membership on such committees shall be determined by the Chair and Associate Chairs, in consultation with the candidate. Responsibilities of the committee include: advising the Chair and Associate Chairs about outside referees; collection, analysis and presentation of teaching materials of the candidate; presentation to the faculty of research and scholarship credentials of the candidate; and summarizing the service contributions of the candidate.

5. Each committee will report its work and recommendations to the Department, and decisions requiring a faculty vote will be determined by majority vote as specified in Article III.1.e of the bylaws.

Article IV. Amendments

Amendments to the By-laws may be proposed by any member of the Department. Proposed amendments will be distributed to members prior to a faculty meeting at which the proposal is to be discussed and decided. Acceptance of the amendment(s) requires a positive vote of a minimum of two-thirds of the voting faculty.

Article V. Adoption

The By-laws will be considered adopted following revisions and approval of a majority of the faculty. These By-laws were adopted by faculty vote on December 19, 2005.
Policies and Procedures
Department of Epidemiology and Biostatistics
Students and Advisors

The following is a summary of key policies and procedures that should be used by the Faculty Advisor, and students in the department of Epidemiology and Biostatistics. Faculty and students are urged to consult the current Graduate Bulletin for the full, official descriptions of the University’s Admissions and Graduate requirements, regulations, degree requirements, thesis and dissertation regulations and all graduate programs and courses.

http://www.albany.edu/graduatebulletin/index.htm

The goal of this handbook is to help new and continuing students in the Department of Epidemiology and Biostatistics to familiarize themselves with the requirements of the Masters and Doctoral degree programs that we offer.

Departmental Structure

Dr. Greg DiRienzo – Chair, Department of Epidemiology and Biostatistics
Dr. Millicent Eidson – Associate Chair, Epidemiology Program
Dr. Recai Yucel – Associate Chair, Biostatistics Program
Nicole L. Malachowski – Assistant to Chair, Department of Epidemiology and Biostatistics
Judith Pelton – Secretary, Department of Epidemiology and Biostatistics

**Students are responsible for understanding and applying to their programs the information contained in this handbook, as well as the Graduate Bulletin provided by the University at Albany. Specific questions should be raised with the department.
University at Albany School of Public Health
Department of Epidemiology and Biostatistics

The graduate programs in Epidemiology are designed to develop skills and capability in the practice, research and teaching of this discipline. Students are able to learn and participate in epidemiology first-hand from faculty members (many of whom are employees of the New York State Department of Health with University at Albany appointments) who are actively engaged in epidemiology practice, surveillance and research. The major goal of the programs is to provide understanding of the theory, methods and knowledge of the science of epidemiology for students who plan to be employed in multiple settings, including universities, governmental agencies, health care facilities and private industry. The graduate programs in Biostatistics prepare our students for careers in public health, government statistics, biostatistics for clinical research, environmental statistics, as well as academically oriented careers in teaching and research in mathematical sciences. Course work is coupled with formal involvement in research projects, often in multi-disciplinary collaborations with researchers at the New York State Department of Health, the Albany Medical Center or with faculty in other University at Albany departments and institutes.

Advisors
(Appplies to each program in the Department)

Once you have been accepted into the Department of Epidemiology and Biostatistics you will be assigned an advisor. Advisors are assigned to students based on their interests within the field. Since many of our faculty members are not located on site, you may be required to travel to the Corning Tower, Troy or Menands to meet with them. Unfortunately, we can not guarantee that you will be assigned an advisor on-site as the on-site advisors generally carry a heavy advising load and we do need to distribute advisees among the other faculty members. Off-site advisors are faculty working in public health practice and have the advantage of providing experience and contacts for public health practice projects and careers.

If you would like a specific faculty member to serve as your advisor, you are welcome to make the request to the Assistant to Chair for the department. However, please note that we may not be able to grant your request.

**Please note that it is the responsibility of the student along with their faculty advisor to track the progress through the program on the M.S./MPH Plan of Study Form (Attached in Appendices). Although the Assistant to Chair will review your courses in your final semester to ensure that all requirements are met, it is in the student’s best interest to track their progress regularly with their advisor.
Advisement

Each semester the student is required to meet with their faculty advisor for advice on courses to be taken in the upcoming semester. Once this meeting has taken place, the student must take their signed advisement form (included in this manual) to the Secretary for the Department of Epidemiology and Biostatistics for their Advisement Verification Number (AVN) and any Section Key Numbers (SKN) that may be needed for registration. If the student is unable to bring their form to the department for their numbers, they may ask their advisor to e-mail the courses and their approval to the department secretary, who will then reply to the student with their registration numbers via e-mail within 48 hours of the request. If a student wishes to add or drop a course after they have been advised, the department will require an e-mail from their advisor stating they have approved of this change.

Academic Standing

To remain in good standing, graduate students in the MS and PhD programs must maintain a B average (3.0) in their overall program of study. The student and their faculty advisor will be notified by the University and the Department of Epidemiology and Biostatistics if the grade point average (GPA) falls below a 3.0. The student will receive a warning for the first semester their GPA is below a 3.0, if they fail to bring up their average in the following semester the student could be dismissed from the program.

To remain in good standing, graduate students in the MPH program must maintain a B average (3.0) in both their core courses and overall program of study. The student and their faculty advisor will be notified by the University and the Department of Epidemiology and Biostatistics if the grade point average (GPA) falls below a 3.0 in either category. The student will receive a warning for the first semester their GPA is below a 3.0. If the student fails to bring up their average in the following semester, the student could be dismissed from the program.

Plan of Study

A major responsibility of the faculty advisor is to assist the student in establishing a Plan of Study for his/her overall program. The Plan of Study forms for MS and MPH students are included in this manual. The student, together with their academic advisor, should use the plan of study to guide the student through the program. The plans are designed to show the students and their academic advisors the courses that will be required for graduation from the program. It is the student’s responsibility to be sure they have the necessary courses for graduation. The plan should be reviewed every semester at the time of registration to ascertain that the student is making satisfactory progress toward completing the requirements. It is understandable that the plan is subject to change as the student progresses through the program, but by the end of the student’s program, it should show that all requirements have been fulfilled.
Change of Degree Program

The procedure for changing from the MPH to the MS, or vice versa, is as follows. If the student wishes to change degree programs within their first semester in attendance they will not be required to pay the $75 graduate application fee. They will need to complete the “Request for Change” form (included in this packet) and return the completed form to the department secretary. Their complete file will be forwarded to the new program and will then be subject to review by the admissions committee. If the Admissions Committee decides to accept the student they will be admitted to that department (program for the MPH students). However, if the student wishes to change their program after their first semester of study is completed, they will be required to re-apply to the University and pay the $75 application fee. If the department rejects the application, the student will have the option of remaining in their original program of study.

Transfer of Credits

If a student wishes to transfer credits into their current program, they will need to complete the “Transfer of Credit Application” (included in this handbook). This request should be made by the end of the first semester of study at the University at Albany’s School of Public Health. Please note that it is the student’s responsibility to obtain all necessary documentation to accompany the transfer request. As per the department rule, a student in the master’s program is allowed to request a total of 9 credits to be transferred to their current program. Students in the PhD program are eligible to request up to 29 credits to be transferred to their program here at the SPH. Once the packet has been prepared by the student, it should be returned to the Department. The Department will then forward the request to the appropriate faculty members for their decision and signatures. If at any point the request receives a “disapprove”, the request will not be granted. If the request comes back to the department with approvals and signatures for all parties, it will then be forwarded to the Office of Graduate Studies for their approval and granting of the credits.

Waiver of Credits

If a student wishes to waive a required course for previous graduate work, this request must be made before the end of the first year of the program. The waiver allows a student to opt out of a required course to take another course in its place (note: waivers do not reduce the number of credits needed to complete the MS, MPH, PhD or DrPH programs). For example, if a student wishes to take a 600 level course in place of a required 500 level course, they can petition to waive the required 500 level class and replace it with the desired 600 level course. Again, they will need to complete the Waiver Request Form (included in this handbook) and return it to the department for the appropriate signatures. If the form receives a “disapprove” by any person required to sign the form, it will then be returned to the student with the waiver denied. If the student wishes to revise the form and resubmit it, they are allowed to do so.
Degree Application

If a student expects to complete all requirements for the MS, PhD, MPH or DrPH program at the end of a particular semester, they must file a Graduate Degree Application through MyUA. Deadlines for filing are listed on the University Academic Calendar. The student must also notify the Department of Epidemiology and Biostatistics so their course requirements can be double checked for graduation.

Academic Standards

As per the University at Albany’s Community Rights and Responsibilities handbook:

Academic Dishonesty
Conduct including, but not limited to, plagiarism, cheating, multiple submission, forgery, sabotage, unauthorized collaboration, falsification, bribery or use of purchased research service reports without appropriate notation; and theft, damage or misuse of library or computer resources. Attempts to commit such acts shall also constitute academic dishonesty.

Students assume full responsibility for honesty in academic exercises. The University standards of academic integrity are set forth in Appendix C. **

**Students should be warned that if found guilty of academic dishonesty they may be subject to two types of sanctions. If the instructor is convinced that the student has been dishonest, he or she may administer an academic penalty. The student who disagrees with the judgment or penalty may appeal through established academic appeal procedures. Consult the appropriate department chair, school dean, or academic bulletins for details. At the same time the student may be subject to the proceedings and penalties of the student judicial system outlined in Community Rights and Responsibilities.

Students wishing to file a grievance must bring it to the Department’s attention first. After the Department acts on the grievance, if needed, it will be moved to the School Grievance Committee and then the University’s Committee.
Master of Science Program in Epidemiology

Learning Objectives for the M.S. in Epidemiology Program

- Summarize the history, legal basis and organization of public health practice; identify the major events and innovations which have impacted public health; and explain the role of epidemiology in these events. (EPI 501, EPI 503)

- Describe the full range of epidemiologic practice, including surveillance, screening, etiologic investigations, emergency response and interventions. (EPI 501, EPI 503, electives)

- Identify the major causes of morbidity and mortality in the United States and globally, including causal influences at different levels of society, trends over time and health disparities affecting specific subgroups of the population. (EPI 501, EPI 503)

- Critically evaluate the specific strengths and weaknesses of common epidemiologic study designs. (EPI 501, EPI 502, electives)

- Explain how bias, confounding and random error may affect the results of epidemiologic investigations and how they may be prevented or controlled. (EPI 501, EPI 502)

- Describe basic approaches for the collection of primary data, the use of secondary data and the assessment of quality of measurement. (EPI 501, EPI 502)

- Utilize computer software to enter, edit and manage epidemiologic data. (EPI 514, EPI 552, EPI 553)

- Analyze epidemiologic data using basic statistical techniques and methods, summarize the results and draw conclusions. (EPI 501, EPI 502, EPI 514, EPI 552, EPI 553)

- Support the application of epidemiologic knowledge to the development and analysis of public health policies. (EPI 501, EPI 502, electives)

- Demonstrate basic knowledge of two or more content areas within epidemiology. (electives)

- Apply principles and skills of epidemiology within a field setting. (Field Placement)
- Identify major sources of funding for epidemiologic research and describe the basic structure and content (administrative and scientific) of proposals for the funding of epidemiologic research. (EPI 502, EPI 602)

- Use computerized databases to identify literature relevant to a particular epidemiologic issue and organize this information into a review of the literature. (EPI 502, MS thesis)

- Formulate a feasible research question for an epidemiologic study, based on a review of the relevant literature and an assessment of resources needed for the study. (EPI 502, EPI 602, MS thesis)

- Develop a plan for analysis of epidemiologic data, based on an understanding of the appropriate statistical techniques and the theoretical relationships among the variables being assessed. (EPI 502, EPI 602, MS thesis)

- Obtain and analyze the data needed to address an epidemiologic research question, using basic techniques for collection and analysis of the data. (EPI 502, STA 552, STA 553, EPI 514, MS thesis)

- Communicate, in written and oral formats, the background, description and results of an epidemiologic study (to professional and lay audiences). (MS thesis)
Program Leading to the Master of Science Degree in Epidemiology

Admission Requirements

Applicants to the M.S. program in Epidemiology are expected to satisfy the following requirements for admission:

1. They must hold a bachelor’s degree from a college or university of recognized standing;

2. They must have a concentration (major) in the biological, physical, or social sciences, computer science, mathematics or statistics;*

3. They must have a satisfactory record of academic achievement and scholarship;

4. They must provide three letters of recommendation from academic advisors or other faculty members familiar with the applicant;**

5. They must submit official scores of the Graduate Record Examination*** or Medical College Aptitude Test;

6. Foreign students must submit evidence of proficiency in English, and;

7. A personal interview will be conducted when feasible.

* Students with concentrations in areas other than those listed in requirement 2 may be admitted on the basis of relevant work experience and course work as a non-major in the recommended disciplines. At least one semester of college-level mathematics and biology is strongly advised. Students lacking preparation in the biological sciences will be required to take additional course work in this area.

** For candidates whose academic record predates the application by five years or more, letters of recommendation may be submitted by supervisors.

*** Minimum GRE scores are 600 verbal, 600 quantitative and a 4.5 in analytic writing. TOEFL minimum is a 98 on IBT, 250 CBT or 600 on the PBT.

Degree Requirements

A minimum of 37 graduate credits are required for the M.S. Degree in Epidemiology. The core curriculum totals 25 credits and consists of the following courses:

- Epi 501 Principles and Methods of Epidemiology I (3)+;
- Epi 502 Principles and Methods of Epidemiology II (3)++;
Epi 552 Principles of Statistical Inference I (3)+;
Epi 553 Principles of Statistical Inference II (3)++;
Epi 503 Principles of Public Health (3);
Epi 514 Computer Programming for Data Management and Analysis in Public Health (3); +
Epi 602 Master’s Seminar in Epidemiology (1); +++
Epi 690 Field Placement (3);
Epi 699 Thesis (3).

Students entering the MS and MPH degree program in Epidemiology will take the following courses in their first semester:
(*Please note, it is strongly recommended that new students not register for more than 12 credits in their first semester)

Epi 501 Principles and Methods of Epidemiology I (3)+;
Epi 503 Principles of Public Health (3); +
Epi 514 Computer Programming for Data Management and Analysis in Public Health (3)+;
Epi 552 Principles of Statistical Inference I (3)+;

Students must also take 12 credits of supporting courses, of which at least 6 must be selected from the following courses:

Epi 601 General Topics in Epidemiologic Methods (3)+;
Epi 604 Cancer Epidemiology (3)++;
Epi 605 Infectious Disease Epidemiology (3)+;
Epi 609 Reproductive Epidemiology (3)++;
Epi 610 AIDS Epidemiology (3)+;
Epi 612 Quantitative Methods in Epidemiology (4)+;
Epi 613 Occupational and Environmental Epidemiology (3)++;
Epi 615 Hospital Epidemiology (3);
Epi 619 Epidemiology of Diabetes (3)++;
Epi 620 Epidemiology of Cardiovascular Disease (3)++;
Epi 621 Geographic Information Systems and Public Health (3)+++;
Epi 624 Genetic Epidemiology (3)+;
Epi 625 Zoonoses Epidemiology (3)++;
Epi 631 Advanced Seminar in Infectious Disease Epidemiology Research Methods (3);

+ = Fall only course (subject to change)
++ = Every other year the course is offered (subject to change)
+++ = Spring only course (subject to change)

Other supportive courses related to the student’s area of specialization: Appropriate courses may be selected from such departments as Biomedical Sciences, Environmental Health Science, Biological Sciences, Anthropology, Biostatistics, as well as courses at Albany Medical College.

Field Placement

Students are required to complete a field placement during which the students work closely with a mentor on actual epidemiological projects. Students beginning their second semester of study should begin to work with both their Faculty Advisor and the Placement Coordinator for the School in locating and applying for a field placement. Typically, students in the MS program in Epidemiology will complete their field placement during the summer of their first year in the program. The Faculty Advisor must approve of the placement and should work with the student and the mentor of the training agency in designing goals, objectives, and conditions of the placement. Since a good portion of the field placements are used as thesis topics as well, it is very important that the advisor remain involved in the placement. The student is responsible for making sure they receive a Field Placement Booklet from the Placement Coordinator and for completing and handing in the required forms from the booklet to the Department. Once the placement has been completed, the student is required to write a paper and to give an oral presentation on the placement. The placement final report **must** be given to your advisor and mentor at least 2 weeks prior to the oral presentation. Faculty advisors, mentors and the Department Chair (or Associate Chair) are required to attend the field placement presentation. Students are responsible for securing dates and times when mentor and advisor are available,
then give those dates to the department secretary to allow her to check the Chair’s calendar, please remember the department requires at least a **2 week** lead time.

If a student wishes to waive the field placement due to work they have previously performed in the public health field, they will be required to make the request in writing to the Chair of the Department. If the request is granted, the student will be required to write a paper and give an oral presentation on the waiver.

Epidemiology Thesis (Updated 10/11/13)

All thesis students are required to comply with UAlbany thesis guidelines, available at: http://www.albany.edu/gradstudies/degrecomp/d3.shtml. The UAlbany thesis guidelines address many issues including the format and type of paper for thesis submission. The guidelines in this document provide additional information for Epidemiology MS students in the School of Public Health’s Department of Epidemiology and Biostatistics.

According to the Graduate Bulletin (http://www.albany.edu/graduatebulletin/epidemiology_ms_degree.htm):

“The thesis is to be conducted under the guidance of two members of the faculty (a thesis advisor and a reader). The thesis advisor and faculty advisor need not be the same person. Students may choose to have two readers instead of one. For example, the faculty advisor may be selected as an additional (second) reader when other individuals are chosen as thesis advisor and reader. The thesis must involve the analysis of data and should include a statement of the research question, a review of the literature, a description of methods and results, and a discussion. The level of detail should go beyond that of a journal article. The thesis must be presented before the faculty and students on a designated Master's Presentation Day.”

Prior to beginning the thesis:
Each student needs to identify a thesis subject and a thesis committee, and have these approved by the student’s UAlbany faculty academic advisor.

The thesis committee must include two UAlbany faculty members (a thesis advisor and a reader); however, three committee members are recommended. The thesis chair must be an epidemiology faculty member of UAlbany’s Department of Epidemiology and Biostatistics. Additional committee members with expertise in the thesis subject area do not need to be faculty members. The thesis advisor is designated as the committee chair. The thesis advisor does not need to be the faculty academic advisor.

After the committee members are determined, the student should prepare a short written proposal for the thesis project, including background and significance of the topic, research question(s), and proposed methods. This proposal should receive written approval (signatures) from the thesis committee and academic advisor before submission of the form below. According to UAlbany guidelines, the student submits the “Application for Approval of Subject of Thesis for the Master’s Degree” form to the faculty academic advisor. After the faculty
academic advisor signs the form, it is submitted to the Department of Epidemiology and Biostatistics, which will forward the form to the Office of Graduate Studies for final approval.

Thesis structure and content:
- The ultimate structure for each thesis is determined by the student’s thesis committee. To meet requirements for Epidemiology students, students and their thesis committee are strongly recommended to use one of the following two thesis structures.
- All theses must contain statistical analyses beyond the descriptive level, i.e., to include tests of significance for associations.
- The thesis committee will insure that the thesis includes a multivariate analysis. If not appropriate, the student can demonstrate to the thesis committee that a multivariate analysis has been done in EPI 612, another course, or another project.
- There are two potential thesis styles. Both styles contain the same type of information, but the organization of the information is different. Thesis Style 1 should be considered if the thesis will become a journal article submitted for scientific publication.

Potential Thesis Style 1: Journal article plus additional information
This thesis style would be chosen if the thesis committee determines that the thesis subject and results are sufficiently innovative and important to public health that the article is likely to be accepted for scientific publication. In addition, the thesis committee has determined that the process of conducting the study and analyses, and preparing the scientific article, is of sufficient difficulty to be worthy of meeting the thesis academic requirement.
For this thesis style, the student must write a scientific journal article for a specific journal. The journal article will follow precisely the format of the designated journal in regard to length, headings, number of tables and figures, etc.

This thesis style requires that the scientific journal article receive all required co-author reviews and approvals, and the article is in submittable form with the full intention of submission to a peer-reviewed journal. It is expected that the article will be submitted for publication. However, it is not required that the article be published prior to submission of the thesis to UAlbany. The scientific article would serve as Chapter 2 for the thesis submitted to UAlbany.

Chapter 1 will be an introductory chapter to:
- Outline the larger problems addressed in the research
- Discuss the purpose and major goals of the research

Provide a more comprehensive literature review of the research area than is required or allowed in the scientific article.

Chapter 3 will be a concluding chapter to:
- Show how the manuscript shines light on the larger problems mentioned in the introduction
- Address the significance of the research to the field
• Mention any aspects of the research not included in the scientific article but worthy of discussion
• Discuss the potential for future research
• Provide all data instruments
• Provide any additional tables and figures that could not be included in the scientific article
• Provide a Research Ethics appendix

Potential Thesis Style 2: Traditional thesis
This thesis style would be chosen by the thesis committee if it is less clear that the thesis subject and results are sufficiently innovative and important to public health that the article is likely to be accepted for scientific publication. In addition, the thesis committee does not believe that the process of conducting the study and analyses, and preparing the scientific article, is of sufficient difficulty to be worthy of meeting the thesis academic requirement. Although the student and thesis committee may ultimately determine that it would be beneficial to submit a scientific journal article based on the thesis work for publication, it is not a requirement that the scientific journal article be reviewed and approved for submission to a journal prior to submission of the thesis to UAlbany.

This thesis style will include the following components:
• A title and abstract
• Introduction
• Background--a detailed review of the scientific literature

The objectives or hypothesis for the thesis research
• Detailed methods section describing all data instruments, data gathering methods, laboratory procedures, computer software, and analytic techniques used in the study
• Complete results of the study including all tables and figures, in addition to text narrative describing them
• Detailed discussion comparing study results with previous scientific literature and putting study results in context
• Analysis of the strengths and limitations of the study
• Conclusions of the study
• Future steps for further research or public health actions based on the study results
• Lengthy list of scientific references
• The Research Ethics appendix
• Appendices for any information not included in the body of the thesis including provision of all data instruments

Research Ethics
• Regardless of the thesis format chosen, an appendix with discussion and documentation of research ethics is required for all theses.
• If required for the study, this section should include the IRB application (with correspondence if changes were made) and the letter from the IRB showing approval.
• If the study was declared exempt from IRB approval, documentation of the exemption must be provided.

Scientific Follow-up of Thesis Work
• Students and thesis project participants should be encouraged to consider scientific follow-up of the thesis work including scientific publication or submission of a grant proposal.
• Acceptance of the student’s thesis for scientific publication should never be considered a requirement to meet UAlbany academic requirements.

If the student is following Potential Thesis Style 1, the student must be first author on the submitted publication.

If the student is following Potential Thesis Style 2 and plans to develop the article for possible future scientific publication after meeting UAlbany academic requirements, the student should be given the choice of being first author. If the student chooses not to be the first author of the scientific publication, the thesis advisor or another project participant may assume first author status and responsibilities, as long as the student remains as second author and other authors are included as appropriate.

• First authorship responsibilities include resolving differences among coauthors, obtaining appropriate approvals before submission, serving as the corresponding author for the journal editors, addressing all peer reviewer comments and making appropriate changes, keeping coauthors informed during the entire review and publication process, and determining with coauthors whether other journals should be considered if the thesis is not accepted by the initial journal.
• The student’s faculty academic advisor should be considered as a coauthor if heavily involved as a thesis committee member in study decision-making and final manuscript preparation and editing.

Thesis Defense and Submission
The oral presentation for the thesis defense should be scheduled by the student sufficiently prior to the UAlbany thesis submission date that any final changes required by the thesis committee can be made by the student before UAlbany submission.
The thesis defense must be scheduled so that the student and all members of the thesis committee can attend (in-person, by conference call, or by webinar). The student must present the defense in-person unless there are strong extenuating circumstances requiring a conference call or webinar, which are approved by the Department. The thesis committee members and the Department Chair (or Associate Chair) are required to attend the field placement presentation. Students are responsible for securing dates and times when committee members are available, then give those dates to the department secretary to allow her to check the Chair’s calendar, please remember the department requires at least a 2 week lead time.
In addition to two or more committee members, an additional Department of Epidemiology and Biostatistics faculty member approved by the Department Chair who is not on the thesis committee is required to attend the oral thesis defense and represent the Department in evaluating the defense. This faculty member may be someone with expertise in the subject area recommended by the committee, the faculty academic advisor if not already on the committee, the Department Chair or Associate Chair, or another faculty member selected by the Department Chair.

- Students must provide all members of the thesis committee, the departmental chair or representative, and the faculty academic advisor a copy of the written thesis (as an electronic or hard-copy document). Members of the thesis committee should receive it at least one week prior to the thesis defense. The departmental chair or representative can receive it at the time of the defense, and the faculty academic advisor (if not a member of the thesis committee) should receive it as soon as possible after the defense.

- Students must bring to the thesis defense for each member of the thesis committee, the departmental chair or representative, and faculty academic advisor:
 - a slide handout
 - a copy of the written thesis
 - a cover sheet for the thesis with the thesis title, student name, names of all committee members, departmental chair or representative, and academic advisor, and places for each of these to sign and date the cover sheet indicating approval of the thesis for UAlbany submission.

Students should also bring to the thesis defense a sufficient number of slide handouts for the anticipated number of guests at the thesis defense.

Research Tool Requirement: Proficiency in computer programming/data management (EPI 514).
Doctor of Philosophy Program in Epidemiology

Learning Objectives for the PhD in Epidemiology Program

- Summarize the history, legal basis and organization of public health practice; identify the major events and innovations which have impacted public health; and explain the role of epidemiology in these events. (EPI 501, EPI 503)

- Describe the full range of epidemiologic practice, including surveillance, screening, etiologic investigations, emergency response and interventions. (EPI 501, EPI 503, electives)

- Identify the major causes of morbidity and mortality in the United States and globally, including causal influences at different levels of society, trends over time and health disparities affecting specific subgroups of the population. (EPI 501, EPI 503)

- Critically evaluate the specific strengths and weaknesses of common epidemiologic study designs. (EPI 501, EPI 502, electives)

- Explain how bias, confounding and random error may affect the results of epidemiologic investigations and how they may be prevented or controlled. (EPI 501, EPI 502)

- Describe basic approaches for the collection of primary data, the use of secondary data and the assessment of quality of measurement. (EPI 501, EPI 502)

- Utilize computer software to enter, edit and manage epidemiologic data. (EPI 514, EPI 552, EPI 553)

- Analyze epidemiologic data using basic statistical techniques and methods, summarize the results and draw conclusions. (EPI 501, EPI 502, EPI 514, EPI 552, EPI 553)

- Support the application of epidemiologic knowledge to the development and analysis of public health policies. (EPI 501, EPI 502, electives)

- Demonstrate basic knowledge of two or more content areas within epidemiology. (electives)

- Apply principles and skills of epidemiology within a field setting. (Field Placement)
- Identify major sources of funding for epidemiologic research and describe the basic structure and content (administrative and scientific) of proposals for the funding of epidemiologic research. (EPI 502, EPI 602)

- Use computerized databases to identify literature relevant to a particular epidemiologic issue and organize this information into a review of the literature. (EPI 502, MS thesis)

- Formulate a feasible research question for an epidemiologic study, based on a review of the relevant literature and an assessment of resources needed for the study. (EPI 502, EPI 602, MS thesis)

- Develop a plan for analysis of epidemiologic data, based on an understanding of the appropriate statistical techniques and the theoretical relationships among the variables being assessed. (EPI 502, EPI 602, MS thesis)

- Obtain and analyze the data needed to address an epidemiologic research question, using basic techniques for collection and analysis of the data. (EPI 502, STA 552, STA 553, EPI 514, MS thesis)

- Demonstrate an understanding of the epidemiology, major epidemiologic studies, and general physiology and pathophysiology in one of the following areas: chronic disease epidemiology, environmental epidemiology, infectious disease epidemiology, or occupational epidemiology. (Topics courses)

- Know the history of scientific and epidemiologic thinking; understand specific aspects of philosophy of science relevant to epidemiology, such as the distinction between inductive and deductive reasoning, and Popperian approaches to epidemiologic practice (EPI 601)

- Analyze epidemiologic data using multivariable regression, survival analysis, longitudinal analysis, or other advanced statistical methods. (EPI 612, 701, STAT 556, 558, 559, 664, 666, Dissertation)

- Examination of data for the presence of confounding and interaction (effect modification), identify their presence, and manage them appropriately. (EPI 612, 701)

- Demonstrate teaching capability through leading a workshop in an epidemiology course or equivalent activity.

- Demonstrate mastery of a substantive area, including knowledge and application of that knowledge in conducting original research related to a specific topic. (Topics courses, Dissertation)

- Identify scientific literature appropriate for a research question. (Dissertation)
- Review and critically evaluate the literature in the area of the dissertation; synthesize the information; identify meaningful gaps in knowledge. (Dissertation)

- Formulate an original and key hypothesis or statement of the research problem. (Dissertation)

- Know the epidemiology, physiology, and pathophysiology of the topic area addressed in the dissertation. (Topics courses, Dissertation)

- Know the global, cultural, and social context of the topic area addressed in the dissertation and how these influence the conduct, interpretation, and dissemination of research. (Topics courses, Dissertation)

- Know the in-depth issues related to ethics of public health practice that pertain to the topic area addressed in the dissertation. (Dissertation)

- Interpret research results, make appropriate inferences based on results, and recognize the implications of the research results. (Dissertation)

- Determine the relevance of the research results to public health practice. (Dissertation)

- Apply knowledge of human subjects protections and confidentiality to research activities. (Dissertation)

- Communicate research results orally and in writing to both scientists and non-scientists. Write a manuscript suitable for publication in a scientific journal and an article suitable for a newspaper. Prepare a presentation of research results suitable for a scientific conference. (EPI 612, 701, Dissertation)
Program Leading to the Doctor of Philosophy Degree in Epidemiology

Admission Requirements

In addition to the general University requirements for admission to graduate study, applicants to the graduate program in epidemiology are expected to:

1. Hold a master’s or doctoral degree in one of the fields listed in item 2 below from a college or university of recognized standing approved by the New York State Regents;

2. Have a concentration (major) in the biological, physical, or social sciences, computer science, mathematics, public health (any field), or statistics;*

3. Provide three letters of recommendation from academic advisors or other faculty members familiar with the applicant;**

4. Submit scores of the Graduate Record Examination or Medical College Aptitude Test.***

Advanced standing may be allowed in accordance with University policy for applicants who have completed graduate programs or courses elsewhere. Students may apply for admission with advanced standing for a maximum of 30 graduate credits. Courses may also be waived for students with demonstrated competence in the subject area, but all students must complete a minimum of 30 graduate course credits at the University at Albany for the Ph.D. in Epidemiology.

*Students with concentrations in other areas may be admitted on the basis of relevant work experience, contingent upon the completion of necessary course work. Students lacking sufficient preparation in the biological sciences will be required to take additional courses in this area during their first semester.

**For candidates whose academic record predates the application by five years or more, letters of recommendation may be submitted by supervisors.

***These test scores may be waived in some cases.

Part-Time Study

Part-time study is permitted. However, students must be continuously registered. In accordance with University policy, all degree requirements must be completed within eight years.

Degree Requirements

In general, the requirements for the Ph.D. degree follow the policies and procedures set forth by the University at Albany. The program in epidemiology requires a minimum of 60 graduate
course credits beyond the baccalaureate plus registration for and completion of a satisfactory doctoral dissertation. Students are required to meet the requirements for M.S. in epidemiology along with additional course work. Students are expected to devote at least one year to the research and writing of an acceptable dissertation. The course of study of each student is planned with a faculty advisor who takes into account the student’s previous preparation, area of specialization, and professional objectives. In addition to the core courses, supporting courses, and field placement at the master’s level (or their equivalent), the following course work is required:

1. Seven courses (22 credits) in specific required methods courses as listed in the Core Qualifying Examination Guidelines with a grade of B or higher, plus two additional quantitative methods courses (6 credits) from a boxed list in the Core Qualifying Examination Guidelines with a grade of B or higher.

2. A minimum of 14 credits of supporting graduate courses approved by the academic advisor as meeting the student’s intended area of expertise. Further courses may be required at the discretion of the dissertation committee. The Department has recommendations for the supporting coursework in optional areas of expertise including — Infectious Disease Epidemiology, Chronic Disease Epidemiology, and Environmental/Occupational Epidemiology. Students and their advisors may vary from those recommendations if they wish to focus more specifically within one of those areas, or students may choose an area of expertise for their coursework and dissertation that does not fall into one of those three areas. Recommendation for courses for existing and additional concentrations can be found on the website.

Field Placement

Students are required to complete a field placement during which the student works closely with a faculty member of the Department of Epidemiology on actual epidemiologic projects including experience in the areas of study design, data management and analysis. This requirement can be met by completion of Epi 690 Field Placement, or by equivalent experience obtained in a prior degree program, or in a work setting. The acceptability of equivalent experience is determined by the Department’s academic committee.

Research Tool

Proficiency in computer programming/data management (SAS or R) fulfills the research tool requirement.

Qualifying Examination

Detailed information on the procedures for the Core Qualifying Examination are provided in a subsequent section.

Admission to Candidacy

A student is admitted to candidacy for the degree of Doctor of Philosophy upon the following:
1. Satisfactory record in course and research study (a B or higher in required courses)

2. Satisfactory completion of the research tool requirement;

3. Satisfactory completion of the Core Qualifying Examination; and

4. Approval by the student’s committee of a proposed dissertation topic.

Dissertation Proposal

The Ph.D. dissertation is part of each candidate’s curriculum for the doctorate. The dissertation committee must approve the form and content of the dissertation, which must represent an original and significant contribution in the field of epidemiology. The chair of the dissertation committee must be a member of the Department of Epidemiology; the committee consists of a minimum of three members, all of whom must hold the rank of assistant professor or above. One of the committee members must have an assistant professor or above academic position from outside the Department of Epidemiology. The student and committee chair may decide to add additional non-voting committee members beyond the minimum three required, to help advise the student. These non-voting committee members are not required to have faculty appointments. The dissertation proposal must be presented orally and in written format and approved by the committee before the student initiates dissertation research.

At least two, but preferably 3-4 weeks prior to the oral defense of the proposal, the written dissertation proposal and proposed presentation slides must be provided by the student to the committee. Outside readers may be included at the discretion of the committee. The ultimate length and format for the proposal will be determined by the committee chair and committee members. For standardization and clarity in the Department, committees should consider these recommendations in making the final decision about format with the student.

- 12-point font, 1-inch margins, and pages numbered
- Abstract
- Specific Aims and Hypotheses – make clear the specific questions to be investigated in the dissertation and the long term goal(s) for this type of research area.
- Background – literature synthesis, conceptual framework, and rationale for the proposed study.
- Preliminary Findings (optional) – to demonstrate the feasibility or potential importance of the proposed study.
- Research Methods – study design; source population, eligibility criteria, selection procedures; sources of data and collaborations; instruments and methods of data collection; statistical analysis and data management; sample-size justification; strengths and methodologic limitations; timeline for completing the project.
- Significance – discuss what will be learned from the proposed study, its public-health significance, its implications to future research or policy, and what is innovative.
- References
- Appendices (optional) - e.g., supplementary tables or figures, survey instruments used in the dissertation, or technical material.
• Discussion of IRB and research ethics requirements, including a plan to complete required forms and approvals if necessary.

If any voting committee member has sufficient concerns based on review of the written proposal and proposed slides that the student is not ready for the oral presentation of the proposal, that information should be conveyed to the dissertation chair who will require the student to make the appropriate revisions and resubmit the proposal and slides to the committee.

The student’s presentation and defense should normally be scheduled for two hours. The first hour will be a slide presentation by the student that is open to School faculty, staff, and students. Those in attendance may ask questions of the student similar to any scientific presentation. The audience is then dismissed except for the student and committee members for the committee meeting. The committee should ask the student questions about the proposal. The committee meeting will also include discussion without the student, followed by feedback to the student. The committee in its discussion may vote (1) to require additional minor revisions and resubmission of the written proposal to the dissertation chair for approval; (2) to require major revisions that require resubmission of the proposal and approval of the committee; or (3) that the student is insufficiently prepared to move forward and must take additional course work or prepare a new proposal.

Dissertation

The dissertation must be approved by and successfully defended before the dissertation committee; the defense is open to the University community. There are two different formats for the written dissertation that a student can complete: (1) A traditional dissertation in a book format including chapters; (2) Three related articles that are suitable for publication in a peer reviewed journal, along with an introduction and concluding chapters (the preferred format). Please refer to the University at Albany’s website for the official dissertation requirements at http://www.albany.edu/graduatebulletin/requirements_doctoral_degree.htm#policies_doctoral_dissertation and http://www.albany.edu/gradstudies/degreecomp/d2.shtml.

Teaching

Each Ph.D. candidate is required to take part in and demonstrate competence in the teaching of epidemiology. Satisfaction of this requirement is determined by the Department’s Academic Committee.

Change to Graduate Bulletin

“Upon completion of all required courses, each doctoral candidate must pass Core Qualifying Examination before admission to candidacy. The examination covers epidemiologic theory and methods and quantitative methods."
Core Qualifying Examination Guidelines for Doctoral (PhD) Students in Epidemiology

Objective of the Core Qualifying Examination (“Core Examination”)
The examination has two primary objectives:
1. (For students) to review core epidemiology methods and integrate material across core topics to strengthen their knowledge.
2. (For students) to demonstrate a doctoral level knowledge of core epidemiology and critical thinking.

Eligibility to take the Core Examination
Doctoral students are eligible to take the Core Examination only when they have successfully completed (grade of B or higher) 7 courses (22 credits) in the required methods courses listed immediately below . The minimum courses required include (with credits in parentheses).

- EPI 501 Principles and Methods of Epidemiology I (3)
- EPI 502 Principles and Methods of Epidemiology II (3)
- EPI 514 Computer Programming for Data Management and Analysis in Public Health (3)
- STA 552 Principles in Statistical Inference I or STA 554 Introduction to the Theory of Statistics I (3)
- STA 553 Principles in Statistical Inference II or STA 555 Introduction to the Theory of Statistics II (3)
- EPI 601 General Topics in Epidemiologic Methods (3)
- EPI 612 Quantitative Methods in Epidemiology (4)

Before taking the Core Examination, doctoral students must also have completed two additional quantitative methods courses (6 credits) from the list below with a grade of B or higher, of which at least one must be a strongly recommended course (indicated by an asterisk). The following list includes courses eligible to meet this requirement. Students are permitted to take other courses but should receive permission, prior to taking the course, from the Department Chair or Associate Chair if they wish to have another course considered for the minimum methods requirement.

<table>
<thead>
<tr>
<th>Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>STA 554 Intro to the Theory of Statistics I (3)</td>
</tr>
<tr>
<td>STA 555 Introduction to the Theory of Statistics II (3)</td>
</tr>
<tr>
<td>STA 556 Introduction to Bayesian Inference I (3)</td>
</tr>
<tr>
<td>STA 557 Introduction to Bayesian Inference II (3)</td>
</tr>
<tr>
<td>STA 560 Introduction to Stochastic Processes I (3)</td>
</tr>
<tr>
<td>STA 561 Introduction to Stochastic Processes II (3)</td>
</tr>
<tr>
<td>STA 562 Design of Experiments I (3)</td>
</tr>
<tr>
<td>STA 563 Design of Experiments II (3)</td>
</tr>
<tr>
<td>STA 564 Sample Survey of Methodology I (3)</td>
</tr>
<tr>
<td>STA 565 Sample Survey Methodology II (3)</td>
</tr>
<tr>
<td>STA 566* Analysis of Categorical Data I (3)</td>
</tr>
<tr>
<td>STA 567 Analysis of Categorical Data II (3)</td>
</tr>
<tr>
<td>STA 558* Data Analysis I (3)</td>
</tr>
<tr>
<td>STA 559* Data Analysis II (3)</td>
</tr>
<tr>
<td>STA 654 Probability and Theory of Statistical Inference I (3)</td>
</tr>
<tr>
<td>STA 655 Probability and Theory of Statistical Inference II (3)</td>
</tr>
<tr>
<td>STA 656* Design of Clinical Trials (3)</td>
</tr>
<tr>
<td>STA 660 Linear Models I (3)</td>
</tr>
<tr>
<td>STA 661 Linear Models II (3)</td>
</tr>
<tr>
<td>STA 662 Multivariate Analysis I (3)</td>
</tr>
<tr>
<td>STA 664 Time Series Analysis I (3)</td>
</tr>
<tr>
<td>STA 665 Time Series Analysis II (3)</td>
</tr>
<tr>
<td>STA 666* Survivorship Analysis I (3)</td>
</tr>
<tr>
<td>STA 670 Statistical Analysis with Missing Data (3)</td>
</tr>
<tr>
<td>STA 670* Longitudinal Data Analysis (3)</td>
</tr>
<tr>
<td>SOC 708 Multilevel Analysis (3)</td>
</tr>
<tr>
<td>EAPS 662 Survey Research Methods (3)</td>
</tr>
</tbody>
</table>

* strongly recommended courses
Note: The listed information is for the minimum requirement. All doctoral students are recommended to take more than the minimum required methods courses prior to taking the Core Examination. Requirements may be waived in certain circumstances upon petition to the Academic Committee, under procedures developed by the Committee.

Examination Description
The Core Examination is a one-day proctored, written examination. The examination will include questions on the Principles of Epidemiology, and Quantitative Methods. Students will either Pass or Fail the examination. If the student fails the examination, the student will have one more opportunity to pass the examination at a regularly scheduled Core Examination date within 2 years of the original examination date. Failing the Core Examination twice is grounds for dismissal.

Examination Coordinator: Chair of the Academic Committee or designee.

Content:
Students are responsible for knowing the following topics for Principles of Epidemiology:
- Philosophical and theoretical perspectives on causality
- Measures of frequency, effect and association
- Statistical and biological models of interaction
- The structure and relative strengths and weaknesses of epidemiologic study designs
- The meaning of precision and validity in epidemiologic research, as well as how they are assessed and can be improved
- DAGs – know what they are and how utilized

Students are responsible for knowing the following topics for Quantitative Methods:
- All basic epidemiology measures
- Basic statistics taught in 552, 553 or equivalent
- Stratified analysis
- Logistic regression
- Linear regression

Students will have options during the examination for choosing questions from one or more of the following topics for Quantitative Methods (see below for more details on choosing questions):
- Survival analysis (Proportional Hazards regression)
- Poisson regression
- Log-binomial regression
- Mixed models
- General estimating equations
- Log-linear models
- Other analysis techniques may be added to this list over time as they become commonly utilized in epidemiology.

Exam structure: The exam will consist of 6 questions. Three of the questions will be related to Principles of Epidemiology, and three of the questions will be related to Quantitative Methods. Because Principles of Epidemiology and Quantitative Methods are not mutually
exclusive topics, some questions may relate to both areas. Students will be required to answer 5 of the questions, and can choose which 5 questions to answer. The examination will be conducted at the School of Public Health. It will be closed-book, closed-notes, no access to the internet, and will be limited to a single day, in a 6 hour period.

The examination will be blinded in two ways. First, each student will receive a number to mark examinations so that graders are blinded to student’s examinations (the Coordinator or a party not involved in the examination will hold the master list linking codes with student names). Second, graders are not to discuss the examinations with other graders until after the grades are submitted to the examination coordinator.

Schedule mid-January – The specific date for the written examination will be determined by the faculty giving the examination. Usually the faculty will consult students taking the examination for preferred dates; however, faculty schedule the examination. The test dates will be announced by November 15th. Changes of the date, once scheduled, will occur only if there is unanimous agreement of students taking the examination and faculty. Examination questions with grading rubrics will be finalized by the faculty no later than two weeks prior to the examination.

Examiners: The examination will be written and graded by a team of at least two faculty members. One faculty member must have experience teaching EPI 601 and one faculty member must have experience teaching EPI 612, the two courses that provide much of the content which may be addressed on the examination. Examiners will be determined by the Department Chair.

Grading the examination: Each of the 5 answered questions will first be scored separately on a 0 - 20 point scale. Requirements for a Pass grade for the examination are:
- The student must fully pass (75%=15 points) at least one question from EACH area (Principles of Epidemiology and Quantitative Methods); AND
- The student must have a total exam score (combining the scores from all 5 questions) of 75%=75 points.

Faculty must provide grades within three weeks of the written examination date to the Examination Coordinator. Faculty grading the written examination may choose to meet to discuss grades on the written examination after they have been submitted. The Examination Coordinator is responsible for sending the grades to the Department Chair and the students within one week (four weeks of the examination date).

Structure Review
The Academic Committee will review the results of the Core Examination yearly to assess the consistency of scores related to course performance. Special attention will be focused on students who have failed the examination. It is expected that this review may identify problems in admission, coursework, or the examination that may benefit recommendations for the doctoral program.
Recommendations for Doctoral Students Wishing to Obtain Expertise in Infectious Disease Epidemiology

Revised 5/2012

The Department of Epidemiology and Biostatistics does not have a requirement for formal specialties or concentrations within Epidemiology. As indicated in the Doctoral Guidelines, students have at least 14 credits of supporting courses which may be chosen by the student in consultation with their advisor based on the student’s intended dissertation topic and area of expertise. The following recommendations may be considered by the student and advisor for an intended area of expertise in general infectious diseases. Students intending for expertise in more narrowly defined areas of infectious disease may consider other courses.

General Infectious Disease Epidemiology Expertise

- It is recommended the student fulfill the requirement of 14 elective credits with 2 credits of infectious disease basic science and 12 credits of advanced graduate level infectious disease epidemiology courses.

- The Infectious Disease Epidemiology Faculty strongly encourages students to broaden their education by taking more than the minimum courses required for the degree. Additionally, the Faculty encourages students to take courses in other specializations to strengthen their knowledge of epidemiologic methods. Courses in other areas of epidemiology useful to infectious disease epidemiology students include:
 - Epi 604 Cancer Epidemiology (3)
 - Epi 609 Reproductive Epidemiology (3)
 - Epi 611 Controversies in Epidemiology (3)
 - Epi 613 Occupational and Environmental Epidemiology (3)
 - Epi 619 Diabetes Epidemiology (3)
 - Epi 620 Epidemiology of Cardiovascular Diseases (3)
 - Epi 621 Geographic Information Systems (GIS) and Public Health (3)
 - Epi 624 Genetic Epidemiology (3)

Basic Science Course Requirement

- Students who earned undergraduate degrees with a laboratory science major and took an upper division immunology course and/or an upper division microbiology course may not need to consider taking a basic science course. No transfer of credits is allowed for undergraduate coursework.

- Students who have earned medicine-related doctoral degrees (e.g., medicine, veterinary, pharmacy, dentistry) may be able to transfer the credits for one basic science course from their professional degree program. Students who earned a medicine-related degree outside the US in a bachelor’s degree program of five or more years may also transfer one basic science course.
Infectious Disease Epidemiology Course Requirements

The following list includes courses recommended for students desiring expertise in infectious disease epidemiology. Students are permitted to take other courses but should consult with their advisor on course planning to meet the student’s goals.

- EPI 605 Infectious Disease Epidemiology (3)
- EPI 610 AIDS Epidemiology (3)
- EPI 615 Hospital Epidemiology (3)
- Epi 625 Zoonoses Epidemiology (3)
- EPI 631 Advanced Infectious Disease Epidemiology Seminar (3)
- EPI 512 Topics in Infectious Disease Epidemiology (3)

*EPI 512 topics can vary by semester MUST be an infectious disease epidemiology focused course to meet this requirement (e.g., Sexually Transmitted Diseases Epidemiology, Vaccine Epidemiology, Field Epidemiology)

Alternative Courses allowed if pre-approved

Students may take graduate courses at other universities to meet the requirement for supporting courses. Students must obtain approval for the course(s) by their advisor. Students must provide evidence of passing the course. Evidence includes transcripts or letter from the professor stating the course was passed.

Students are not required to take the courses for academic credit at the host university if cost prohibitive. If such an option is chosen, students are still required to meet the 60 credit minimum requirement for the overall doctoral program by substituting other courses to meet the credit requirements.
Recommendations for Doctoral Students Wishing to Obtain Expertise in Chronic Disease Epidemiology

The Department of Epidemiology and Biostatistics does not have a requirement for formal specialties or concentrations within Epidemiology. As indicated in the Doctoral Guidelines, students have at least 14 credits of supporting courses which may be chosen by the student in consultation with their advisor based on the student’s intended dissertation topic and area of expertise. The following recommendations may be considered by the student and advisor for an intended area of expertise in chronic disease epidemiology. Students intending for expertise in more narrowly defined areas of chronic diseases may consider other courses.

The general program of study recommended for PhD students wishing to obtain expertise in Chronic Disease Epidemiology is outlined below. Six courses (18 credits) are recommended from among those listed below. These courses are in addition to those required of all PhD students in the department. Electives should be chosen according to the student’s specific research interests and in consultation with the faculty advisor. Additional coursework may be required at the discretion of the student’s dissertation committee. All courses are 3 credits unless otherwise noted in parentheses below.

Courses on Outcomes (Consider completing at least three)

EPI 604 Epidemiology of Cancer
EPI 619 Epidemiology of Diabetes
EPI 620 Epidemiology of Cardiovascular Disease
HPM 531 Childhood Obesity

Courses on Exposures/Mechanisms/Methods (Consider completing at least three, with at least one from each department)

Epidemiology and Biostatistics

EPI 613 Environmental and Occupational Epidemiology
EPI 621 Geographic Information System Methods
EPI 624 Genetic Epidemiology or Molecular Epidemiology
EPI xxx Built Environment and Health
STA 656 Clinical Trials

Health Policy, Management and Behavior

HPM 525 Social and Behavioral Aspects of Public Health
HPM 535 Community Based Public Health
HPM 620 Health Disparities and Community Health
HPM 623 Stress, Social Support Systems and Health
Recommendations for Doctoral Students Wishing to Obtain Expertise in Environmental and Occupational Epidemiology

The Department of Epidemiology and Biostatistics does not have a requirement for formal specialties or concentrations within Epidemiology. As indicated in the Doctoral Guidelines, students have at least 14 credits of supporting courses which may be chosen by the student in consultation with their advisor based on the student’s intended dissertation topic and area of expertise. The following recommendations may be considered by the student and advisor for an intended area of expertise in environmental and occupational epidemiology. Students intending for expertise in more narrowly defined areas of environmental or occupational epidemiology diseases may consider other courses.

The general program of coursework recommended for PhD students wishing to obtain expertise in Environmental/Occupational Epidemiology is outlined below. These courses are in addition to those required of all PhD. students in the department. Electives should be chosen according to the student’s specific research interests and in consultation with the faculty advisor. Additional coursework may be required at the discretion of the student’s dissertation committee.

Exposure-Based Courses

Strongly Recommended

Epi 613 Environmental and Occupational Epidemiology
Epi 694 Advanced Seminar in Environmental and Occupational Epidemiology

Optional

Epi 621 Geographic Information System Methods

Outcome-Based Courses

It is recommended to complete at least two of these four courses

Epi 604 Epidemiology of Cancer
Epi 609 Reproductive Epidemiology
EPI 620 Epidemiology of Cardiovascular Disease
Epi 624 Genetic Epidemiology or Molecular Epidemiology

Biological Mechanisms

Strongly Recommended

EHS 530 Principles of Toxicology
Optional (it is recommended to complete at least one)

EHS 665 Risk Assessment
BMS 662 Cancer Biology
EHS 540 Principles of Radiation Science
EHS 520 Principles of Environmental Chemistry
Courses in Epidemiology

EPI 501 (Ant 516) Principles and Methods of Epidemiology I (3)
Introduction to epidemiology for students majoring in any aspect of public health; covers the principles and methods of epidemiologic investigation including describing the patterns of illness in populations and research designs for investigating the etiology of disease. Introduces quantitative measures to determine risk, association and procedures for standardization of rates.

EPI 502 (Ant 517) Principles and Methods of Epidemiology II (3)
Application of basic principles and methods (as covered in Epi 501 and Sta 552) in the design and conduct of epidemiologic studies. Topics include the development of research questions; overview of epidemiologic study designs; sampling, sample size, and selection bias; techniques for data collection, sources of secondary data and the evaluation of measurement and information bias; confounding and effect modification; techniques for simple and stratified analyses; and an introduction to mathematical modeling in epidemiology.
Prerequisites: Epi 501, Sta 552 or their equivalents.

EPI 503 (HPM 503) Principles of Public Health (3)
This course introduces the students to the basic principles of public health and their application to the development of activities that benefit the health status of populations. The skills of epidemiology, biostatistics, health care planning and policy development, health care administration and community organization are applied to the assessment of public health needs and the development of prevention and control initiatives.
Prerequisites: None

EPI 512 Topics in Infectious Disease Epidemiology (1-3)
Selected topics in the area of infectious disease control. When the course is offered, credit hours will be announced by the department in advance of preregistration. This course is not acceptable for the satisfaction of core requirements for graduate degree students, unless the student’s advisor determines special circumstances.
Prerequisites: Permission of instructor (course in biology and introductory epidemiology is helpful).

EPI 514 Computer Programming for Data Management and Analysis in Public Health (3)
The course covers a major statistical computer program (e.g. SAS) used for the management, analysis and reporting of public health data. Topics include, how to access data stored in a variety of formats; techniques for identifying errors and outliers in data sets; combining data from multiple sources into a single data file; calculating statistical and epidemiologic measures; and report writing.
Prerequisites: Epi 501, Sta 552 or their equivalents.

EPI 551 Principles of Statistical Inference I (3) for non majors
An introduction to descriptive statistics, measures of central tendency and variability, probability distributions, sampling, estimation, confidence intervals and hypothesis testing. Computing is introduced and used throughout the course.
EPI 552 Principles of Statistical Inference I (3) for majors
An introduction to descriptive statistics, measures of central tendency and variability, probability distributions, sampling, estimation, confidence intervals and hypothesis testing. Computing is introduced and used throughout the course. EPI 552 and EPI 553 satisfies the core requirement in statistics for programs in the School of Public Health.
Prerequisites: None

STA 553 Principles of Statistical Inference II (3)
Continuation of EPI 552. Topics includes correlation, regression, analysis of variance, analysis of contingency tables and non-parametric statistics. Computing is used throughout the course.
EPI 552 and EPI 553 satisfies the core requirement in statistics for programs in the School of Public Health. Prerequisites: EPI 552 or equivalent

EPI 560 Participatory Action Research (3)
The course covers theory, methods and practice of Participatory Action Research (PAR). PAR may be used in various community, workplace and other organizational settings for identifying collective social problems, negotiating, implementing and evaluating possible solutions. Issues of power in social change; principles of social equity and democracy; political implications of the conduct and products of science; questions of scientific validity; forming and sustaining partnerships between community organizations, universities, unions, not-for-profit and for-profit businesses will be discussed. Various applications and case studies including public health, education, social welfare, environment/ecology, community planning, labor and business development will be discussed.
Prerequisites: Permission of Instructor.

EPI 601 General Topics in Epidemiologic Methods (3)
Examination of recent ideas and unresolved controversies regarding fundamental principles of epidemiologic measures and study design. Topics include causality, epidemiologic measures, standardization, interaction between causes, matching, and the basis for improving the validity and precision of epidemiologic research.
Prerequisites: Epi 501, 502, Sta 552 and Sta 553.

EPI 602 Master’s Seminar in Epidemiology (1)
A seminar in which the knowledge and skills acquired during the master’s program are integrated in the examination of a single, semester-long topic. Historical, biological and public health policy perspectives are included with discussion of epidemiologic issues.
Prerequisites: Epi 501, 502, Sta 552, 553.

EPI 604 Cancer Epidemiology (3)
Review of concepts and methodological issues central to the conduct of epidemiologic studies of cancer etiology and control. Overview of the molecular and cellular basis of cancer, the role of experimental studies in assessing human risk, the classification and nomenclature of human cancer and the morphology, natural history and etiologic importance of precursor lesions. Application of descriptive and analytic epidemiologic methods to studies of cancer etiology will be illustrated through in-depth reviews of specific forms of neoplasia: leukemias, lymphomas,
melanomas and malignant neoplasms of the breast, respiratory, gastrointestinal, reproductive, urinary and nervous systems. Discussion of the role of epidemiology in cancer control, including the behavioral and regulatory aspects of cancer control and fundamental issues in cancer screening.
Prerequisites: Epi 501.

EPI 605 Infectious Disease Epidemiology (3)
This course reviews infectious disease principles and the use of epidemiologic methods in the assessment of selected communicable diseases of national and international importance. Emphasis will also be given to methods of transmission, the role of surveillance and methods of control and prevention. Specific disease examples to be covered will include: tuberculosis, legionellosis, measles, Lyme disease and syphilis with examples of nosocomial foodborne and enteric infections. Case studies and literature examples will be used extensively to give students an appreciation for the application of epidemiologic principles to this field.
Prerequisites: None, previous course in biology and introductory epidemiology is useful.

EPI 606 General Topics in Epidemiology (3)
Selected topics in the area of Epidemiology. When the course is offered, credit hours will be announced by the department in advance of preregistration. This course is not acceptable for the satisfaction of core requirements for graduate degree students, unless the student’s advisor determines special circumstances.
Prerequisites: Permission of instructor (course in biology and introductory epidemiology is helpful).

EPI 609 Reproductive Epidemiology (3)
An overview by clinical and non-clinical faculty of the pertinent physiological mechanisms of pregnancy and fetal growth which are critical to the understanding of epidemiological methods used to investigate adverse reproductive outcomes and normal pregnancies. Discussion of unique qualities of circumstances surrounding fertility, conception, pregnancy and its outcome in detail to show their peculiar suitability for epidemiological investigation. Exposure through actual case histories and population studies to methods used to investigate problems relevant to perinatal morbidity and mortality, maternal mortality, spontaneous and induced abortion, hypertension and infections of pregnancy and the etiology of congenital malformations.
Prerequisites: Epi 501, Sta 552.

EPI 610 AIDS Epidemiology (3)
Students will learn to apply the basic principles and methods of epidemiology to the investigation and control of the AIDS epidemic. Epidemiologists, prevention program managers and policy makers actually involved in the development and implementation of control strategy in New York State will provide a learning experience involving classroom lectures, and student-initiated research projects and presentations. Major issues explored will include surveillance, clinical manifestations of AIDS, modes of transmission, implications for the health care system, control measures and the ethical dilemmas associated with managing the AIDS epidemic.
Prerequisites: Epi 501 and college level biology course, or permission of instructor.

EPI 611 Controversies in Epidemiology (3)
The course focuses on current controversies in epidemiology through a critical review of the literature. Discussion will center on biologic plausibility, reasons for conflicting findings, strength of evidence and on methodological issues. Topics may vary from year to year. The course follows a seminar format and emphasis is placed on student participation.
Prerequisites: Epi 501, 502; Sta 552, 553 or Permission of instructor.

EPI 612 Quantitative Methods in Epidemiology (4)
Students will learn the epidemiologic application of concepts introduced in STA 552 and 553. Topics include simple and stratified analyses of cross-sectional, case-control, cumulative follow-up and density follow-up studies; assessment of confounding and interaction; matching in epidemiologic studies; theoretical considerations, analysis strategies and applications in linear and logistic regression.
Prerequisites: Epi 501, 502 or equivalent, Sta 552, 553 or equivalent; Epi 601 is recommended.

EPI 613 Occupational and Environmental Epidemiology (3)
Compare and contrast the methods used in occupational epidemiology with those used in environmental epidemiology. Review of the health risks of physical/chemical agents in air, water and soil. Topics to be covered: studies of mortality including retrospective cohort studies, proportional studies and case-control studies within a cohort; studies of morbidity including case reports, case-control studies, cross-sectional studies and cohort studies; and surveys of the health status of persons including exposure-based surveillance of populations and diseased-based surveillance of diagnosed populations. Special emphasis will be placed on data sources, measurement of exposure, confounding, bias and measurement outcome. Uses of epidemiology in risk assessment and risk management (public health intervention) will also be presented with focus on some current New York State examples.
Prerequisites: Epi 501, Sta 552.

EPI 615 Hospital Epidemiology (3)
This course provides an overview of the history of hospital epidemiology, methods of surveillance, risk factors for infection, control measures and impact of infections in health care facilities. Host, agent and environmental factors will be explored in the laboratory, hospital (Albany Medical Center), and through classroom lectured and directed readings. Students will learn to apply the basic principles of public health and epidemiology to the problem of infections acquired.
Prerequisites: Epi 501, Sta 552.

EPI 616 Social Class, Race and Culture in Epidemiology (3)
The course covers the theoretical basis and the historical development of social class and race constructs. Sources of available data and the way in which typical indicators of social class and race are defined and analyzes will be presented. Observed relationships of a range of health outcomes with social class and race in epidemiology will be presented and critically evaluated. Social and public health implications of different approaches and interpretations are discussed.
Prerequisites: Epi 501, Sta 552

EPI 619 Epidemiology of Diabetes (3)
The following topics are addressed: 1) biology of glucose regulation, types of diabetes and complications; diagnostic criteria/ screening; care and management; 2) epidemiology of diabetes prevalence/incidence/ mortality, complications, risk factors; 3) diabetes prevention issues including measurements of obesity and physical activity; types of interventions and evaluation designs; cultural issues. Critical thinking regarding study designs, measurements, bias and results is reinforced through reading and discussions of epidemiology studies.
Prerequisites: Epi 501, Sta 552.

EPI 620 Epidemiology of Cardiovascular Diseases (3)
The following topics are addressed 1) biology/pathology of cardiovascular diseases (CVD); diagnosis and misclassification of CVD in mortality data, hospital discharge data and community studies; 2) descriptive epidemiology of coronary heart disease and stroke, including trends and geographic distributions; 3) overview of CVD; 4) descriptive epidemiology of CVD, social class and race; discussion of mechanisms; 5) epidemiology multi-risk factor studies and current community studies; discussion of high risk vs. population approaches to prevention of cardiovascular diseases. Critical thinking regarding study designs, measurements, bias and results is reinforced through reading and discussions of epidemiology studies.
Prerequisites: Epi 501, Sta 552.

EPI 621 Geographic Information Systems and Public Health (3)
This course covers the basics of geographic information systems (GIS) as applied toward positioning systems (GPS), sources of data and spatial statistical methods are among the topics covered.

EPI 624 Genetic Epidemiology (3)
This course is designed to introduce students to the theory and practice of genetic epidemiology. The goal of genetic epidemiology is to identify genetic mechanisms and gene-environment interactions involved in the etiology of complex diseases and phenotypes. An in-depth discussion of designs and methodologies involved in conducting both family-based and population-based genetic epidemiologic studies will be offered. An overview of the currently available software for genetic epidemiologic analyses will be given. The lecture material will be supplemented with discussions of published studies and examples using real and simulated data if possible.
Pre-requisites: Epi 501, Epi 552 and a basic understanding of molecular biology, genetics and biochemistry.

EPI 625 Zoonoses Epidemiology (3)
An overview of zoonotic infectious diseases (those diseases in common between animals and humans); including rabies, potential bioterrorist agents (anthrax, plague, Q fever, tularemia), newly emerging diseases (West Nile virus, leishmaniasis, vCJD), vector-borne diseases (lyme disease), and diseases with zoonotic potential (foot and mouth disease, chronic wasting disease); addressing the epidemiologic, field, and laboratory methods of investigation; and assessment of
surveillance, prevention, control and treatment including relative cost/benefit of various approaches.
Prerequisites: None

EPI 631 Advanced Seminar in Infectious Disease Epidemiology Research Methods (3)
Selected topics in the area of infectious disease control. When the course is offered, the department will announce the credit hours in advance of preregistration. This course is not acceptable for the satisfaction of core requirements for graduate degree students, unless the student’s advisor determines special circumstances.
Prerequisites: Permission of instructor.

EPI 690 Field Placement (1-3)
Students are required to complete a field placement during which the student works closely with a mentor on an epidemiological project.
Prerequisites: Permission of advisor.

EPI 694 Directed Readings in Epidemiology (2-6)
Projects in selected areas of epidemiology at the graduate level and under the supervision of a faculty member. A final written report is required. May be repeated once when topics differ for a total of 6 credits.
Prerequisites: Permission of instructor.

EPI 697 Independent Study and Research (2-6)
Independent study and research in selected areas of epidemiology at the graduate level and under the supervision of a faculty member. A final written report is required. May be repeated once when the topics differ for a total of 6 credits.
Prerequisites: Permission of instructor.

EPI 699 Master’s Thesis in Epidemiology (2-6)
Research leading to an acceptable thesis for the master’s degree in epidemiology. The research must include data analysis and interpretation.
Prerequisites: Permission of thesis advisor.

EPI 897 Independent Study and Research (2-6)
Independent study and research in selected areas of epidemiology at the graduate level and under the supervision of a faculty member. A final written report is required. May be repeated one when the topics differ for a total of 6 credits.
Prerequisites: Permission of instructor.

EPI 899 Doctoral Dissertation (1-12)
Required for all Ph.D. students.
Prerequisites: Permission of dissertation advisor.
Learning objectives for the Master of Science program in Biostatistics

- Apply discrete and continuous probability theory to compute probabilities and form probabilistic models associated with health related data. (STA 554, STA 555, STA 556, STA 557, STA 560, STA 561, STA 660, STA 661, STA 664)

- Apply mathematical statistical theory to construct the likelihood functions and associated statistical properties for tests of hypotheses and confidence intervals for parameters of models associated with biostatistical data. (STA 558, STA 559, STA 565, STA 566, STA 567, STA 660, STA 661, STA 662, STA 664, STA 665, STA 666)

- Apply classical and robust graphical and tabular techniques to describe biomedical or public health data. (STA 558, STA 559, STA 564, STA 566, STA 570)

- Identify data types and the appropriate analysis for biostatistical data. (STA 558, STA 559, STA 566, STA 570, STA 655)

- Create and direct an appropriate statistics design and analysis for medical or public health research questions. (STA 558, STA 559, STA 570, STA 656, STA 669)

- Calculate sample size for standard procedures. (STA 566, STA 567, STA 656)

- Use random numbers to select a random sample, randomize subjects into treatments and perform monte carlo simulations. (STA 556, STA 557, STA 558, STA 559, STA 560, STA 561, STA 565, STA 570, STA 656)

- Input, manage, "clean" and manipulate complex biostatistical files. (STA 558, STA 559, STA 570, STA 656)

- Communicate statistical analyses to technical and non-technical audiences. (STA 570, STA 656, STA 664, STA 665, STA 669)

- Apply R and SAS statistical packages to carry out standard and non-standard analyses. (STA 556, STA 557, STA 558, STA 559, STA 566, STA 567, STA 570, STA 656, STA 664)

- Describe how biostatistical theory and techniques are applied in specific areas of public health or other health-related sciences. (electives outside of biostatistics)
- Program Leading to the Master of Science Degree in Biostatistics

The Department of Epidemiology and Biostatistics is the University at Albany's center for graduate work in biostatistics. Students prepare for careers in public health, government statistics, biostatistics for clinical research, environmental statistics, as well as academically-oriented careers in teaching and research in mathematical sciences. Course work is coupled with formal involvement in research projects, often in multi-disciplinary collaborations with researchers at the New York State Department of Health, the Albany Medical Center or with faculty in other University at Albany departments and institutes. Degree offerings include the M.S. in Biostatistics, the Ph.D. with dissertation research in biostatistical theory and its application, and the biostatistics-centered MPH. The Dr.P.H. also offers a concentration in biostatistics. Faculty work with students one on one to find the particular balance of course work, the area of application or collaboration and the program breadth to suit an individual's interests and goals. All students are expected to understand the basic theory and modern methodologies associated with biostatistics by the time they graduate, so they can apply up-to-date biostatistical methods to applied scientific problems and utilization of governmental health related data bases.

Recipients of the doctoral degree are expected to develop innovative methodologies either through mathematically related scientific research or through development of new linkages between relevant contemporary statistical methodology and specific areas of public health practice.
MASTER OF SCIENCE PROGRAM

Admission Requirements

In addition to the general University admission requirements, applicants to the M.S. program are expected to have a major in mathematics, statistics, the biological, physical, or computer science. Linear algebra, multi-variate calculus and computer programming are required for the successful completion of the program.

Degree Requirements

The M.S. program in Biostatistics stresses theory and methodology to provide students with skills that can be applied to many areas, including health care, economics, social, biological and environmental sciences and the development of observational studies and survey techniques. The M.S. program may also lead toward a doctoral degree with research focused on statistics, biometry, mathematics or econometrics.

Biostatistics Sequence (36 credits minimum)

1. Statistics (18 credits: courses as advised, including STA 669; with departmental approval, a thesis may be presented in place of STA 669.)

2. Biology, epidemiology or public health courses (6 credits minimum: courses as approved by advisor).

3. Supporting courses (0-12 credits, as approved by the advisor for the biostatistics sequence).

4. Satisfactory completion of a special field examination.

Students entering the MS degree program in Biostatistics will typically take the courses listed below in the their first semester (*Please note, it is strongly recommended that new students not register for more that 12 credits in their first semester)

STA 554 Introduction to Theory of Statistics I (3) +;
STA 558 Methods of Data Analysis I (3)+;
EPI 501 Principles and Methods of Epidemiology I (3) +;
EPI 514 Computer Programming for Data Management and Analysis in Public Health (3)+;

+ = Fall only courses
++ = Every other year the course is offered
+++ = Spring only course

Recommended courses: STA 554/55, STA 558/59, and at least one of STA 556, STA 560, STA 562, STA 564 or STA 566.
Part-time study

Part-time study is permitted in the M.S. program. University policy requires that all degree requirements be completed in six years.

Master’s Project Guidelines:

When the student obtains 33 credits of coursework, he/she is required to complete a Master’s project under the guidance of an advisor, and upon completion, is required to give an oral presentation that summarizes the results. The oral presentation must be attended by three (3) Biostatistics faculty members and the Chair of the Department of Epidemiology and Biostatistics. One the student has obtained dates and times from their faculty advisor, mentor and other Biostatistics faculty in the department, they must check the availability of the Chair of the department with the departmental secretary. In addition, the student must complete a written paper that provides details of the Master’s project. Both the oral presentation and written paper must be completed satisfactorily for a Master’s degree to be awarded. Note that the student enrolls in Masters Seminar for 3 credit hours during the semester when the project is completed, for a total of 36 credits at graduation.

The following is a guideline for Biostatistics students who are candidates for a Master’s degree for use in preparation of a Master’s degree paper; all bullet points described below need to be addressed in the paper. If the student wishes to pursue publication of his/her project in a scientific journal, then having the Master’s degree paper satisfy the requirements below will generally provide an adequate basis from which a paper can be constructed for submission to the journal of interest. The outline of the Master’s paper has five sections:

1. **Background and Introduction**
 - Provide sufficient introduction to the project. Describe the general setting and data sources. Provide a literature review and summarize why the project is important.

2. **Objectives**
 - Describe the specific goals and objectives that the project attempts to achieve.

3. **Methods**
 - Describe in detail all statistical methodology used to analyze the data.

4. **Analysis and Results**
 - Provide the results in a clear and concise way. If tables and/or figures are presented, make sure that each one is properly labeled and that each one is
described and interpreted in the text of the document. Model checking/diagnostics should be used whenever possible.

5. Summary and Discussion

- Provide a clear summary of the project and the ‘take home message’. Discuss any potential limitations of the analysis, any possible ways to improve the analysis, and any areas of future research.

6. References

- All scientific references used for the project should be listed in this section and appropriately cited in the paper.

- Follow an appropriate format used in a biostatistics journal as agreed upon with the advisor.
Program Leading to the Doctor of Philosophy Degree in Biostatistics

Admission Requirements

In addition to the general university requirements for admission to graduate study, applicants to the doctoral program in Biostatistics are expected to:

1. Have a bachelor's degree with a major in mathematics, statistics, computer science, the biological, physical or social sciences. Students should have adequate backgrounds in linear algebra, multivariate calculus and computer programming in order to successfully complete the program. Exceptions may be made in special circumstances.

2. Provide three letters of recommendation from academic advisors or other faculty members familiar with the applicant. For candidates whose academic record predates the application by five years or more, letters of recommendation may be submitted by supervisors.

3. Submit official scores of the Graduate Record Examination or Medical College Aptitude Test.

Academic Advising

Each student is assigned an advisor who assists the student in selecting courses, a master's project (if not admitted with master's degree; see Biostatistics Guidelines for MS Projects), and a dissertation topic. Students meet with their advisors on a regular basis to discuss progress in the program and to establish goals for the next term.

Course Requirements

The doctoral program of study and research normally takes four years of full-time study and research beyond the baccalaureate. A total of 60 credits are required beyond the baccalaureate. If entering with a master's degree, up to 30 graduate credits may be eligible for counting towards the total 60 credit requirement. The general program requirements call for a minimum of two years of full-time graduate study or the equivalent, and at least one additional year devoted to the research and writing of an acceptable dissertation. Students must also adhere to the University's requirements as described in the Graduate Bulletin.

During the first two years of study, the student obtains a general education in statistical theory and methodology. The student develops a program of course work under the guidance of a faculty advisor and, upon successful completion of the course work, typically receives a master's degree at the end of the second year. However, a master's degree is not a prerequisite for obtaining a doctoral degree.

Students typically choose courses from the list below (all courses are 3 credits unless otherwise noted in parentheses). However, other courses can be selected with the advisor's approval.
Students are required to take at least six credit hours in courses other than biostatistics; these typically are from the departments of epidemiology, economics, sociology, health policy and management, mathematics, computer science, and biology.

Preliminary Examinations

Students wishing to pursue the PhD degree must pass two written preliminary examinations, one in mathematical statistics and probability, and the other in applied statistics. Students normally take the preliminary examinations at the end of the second year of study. Typically the mathematical statistics and probability examination is offered in June and the applied statistics examination in January of each year. (Please note that students must be admitted in to the doctoral program before taking the preliminary examinations)

The required courses for the mathematical statistics and probability examination are STA 554, STA 555 and STA 560.

The applied statistics preliminary examination is based on two courses typically chosen from the following: STA 556, STA 566, STA 656, STA 664, STA 666, and STA 670.

If a student fails a written preliminary examination, he/she will have one chance to take that examination again. If the student fails the examination the second time, he/she will be dismissed from the doctoral program. In the very special circumstance when, on the second taking, the student is judged to have performed marginally, but not a clear pass, he/she will be given a third chance to take the examination, for which a clear pass is required, otherwise he/she will be dismissed from the doctoral program.

Oral Qualifying Presentation

After successfully passing the two written preliminary examinations, the student begins the process of specialization. As soon as possible, the student selects a dissertation advisor. A committee is formed to guide the student's subsequent progress toward the degree. Readiness to begin the dissertation is marked by satisfactorily completing an oral qualifying presentation,
where the student presents and defends his/her proposed topic of study. A student normally gives this oral presentation within 18 months after passing the two written preliminary examinations. Upon successful completion of the oral qualifying presentation, the student advances to candidacy and begins work on the dissertation. If a student fails his/her oral qualifying presentation, another chance to pass will be given, until a pass is obtained.

Part-Time Study

It should be noted that students in the PhD program are expected to be full-time students until at least both of the written preliminary examinations are passed. Only in very special circumstances, as approved by the department chair, will a student be allowed part-time status before both written preliminary examinations are passed.

The University at Albany has a requirement that all doctoral work be completed within eight years. Thus, it is likely that two or more years of full-time work toward a doctoral degree will be necessary if the student hopes to satisfy this requirement.

Teaching

Each Ph.D. candidate is required to take part in and demonstrate competence in the teaching of epidemiology. Satisfaction of this requirement is determined by the Department’s Academic Committee.

Research Tool

The research tool requirement for the doctoral degree is met by satisfactorily demonstrating computer literacy; competency is evaluated by the faculty.

Admission to Candidacy

A student is admitted to candidacy for the doctoral degree upon completion of the following:

1. Satisfactory record in graduate course and research study (minimum GPA of 3.0);
2. Completion of the University's residence requirement;
3. Completion of written preliminary examinations;
4. Successful completion of the oral qualifying presentation;
5. Approval by the student's committee of a proposed dissertation topic.

Dissertation

Once the student is advanced to candidacy, he/she registers for *doctoral dissertation* credits during the course of time the dissertation is pursued. Note that a student cannot register for doctoral dissertation credits until he/she is advanced to candidacy.

The dissertation is based on independent research by the candidate and
should constitute a significant original contribution to the area of biostatistics. The dissertation committee consists of at least three members, all of whom must hold the rank of assistant professor or above. One of the committee members must be a non-biostatistics faculty member. Outside readers may be included at the discretion of the committee. The dissertation must be approved by and successfully defended before the dissertation committee; the defense is open to the University community.

The dissertation should be provided in writing and available for committee members to review at least one month before the defense. In addition, the dissertation should be publically orally presented at a public seminar or meeting; examples include the department's seminar series, the American Statistical Association (ASA) local chapter meeting, the Joint Statistical Meeting (JSM), or ENAR meeting.

Please refer to the University at Albany’s website for the official dissertation requirements at http://www.albany.edu/graduate/pdfs/DissertationDIGITALSubmissionInstructionsAmended12-08b.pdf
COURSE IN BIOSTATISTICS

STA 550 Introduction to Computing (1)
An introduction to the use of micro and main-frame computers. Communications between computers and the use of statistical and word processing software packages will be included. Prerequisites: None

STA 552 Principles of Statistical Inference I (3)
An introduction to descriptive statistics, measures of central tendency and variability, probability distributions, sampling, estimation, confidence intervals and hypothesis testing. Computing is introduced and used throughout the course. STA 552 and STA 553 satisfies the core requirement in statistics for programs in the School of Public Health. Prerequisites: None

STA 553 Principles of Statistical Inference II (3) Continuation of STA 552. Topics includes correlation, regression, analysis of variance, analysis of contingency tables and non-parametric statistics. Computing is used throughout the course. STA 552 and STA 553 satisfies the core requirement in statistics for programs in the School of Public Health. Prerequisites: STA 552 or equivalent

STA 554 Introduction to Theory of Statistics I (3)
A mathematical treatment of principles of statistical inference. Topics include probability, random variables and random vectors, univariate and multi-variate distributions and an introduction to estimation. Appropriate for graduate students in other disciplines and for preparation for the second actuarial examination. Prerequisites: Calculus and Linear Algebra. Equivalent to Mat 554. Students may not receive credit for Mat 554 and STA 554.

STA 555 Introduction to Theory of Statistics II (3) Continuation of STA 554. Topics include methods of estimation, theory of hypothesis testing, sufficient statistics, efficiency and linear models. Appropriate for graduate students in other disciplines and for preparation for the second actuarial examination. Prerequisites: STA 554, Mat 554 or equivalent.

STA 556 Introduction to Bayesian Inference I (3)
Topics include subjective probability, axiomatic development and applications of utility, basic concepts of decision theory, conjugate and locally uniform prior distributions. Prerequisites: STA 552 or equivalent. Equivalent to Mat 556. Students may not receive credit for Mat 556 and STA 556.

STA 557 Introduction to Bayesian Inference II Continuation of STA 556. Topics include limiting posterior distributions, estimation and hypothesis testing, preposterior distributions and their application to the design of statistical investigations. Prerequisites: STA 556 or equivalent. Equivalent to Mat 557. Students may not receive credit for STA 557 and Mat 557.
STA 558 Methods of Data Analysis I (3)
Statistical methodology emphasizing exploratory approaches to data. Elementary notions of modeling and robustness. Overview of inferential techniques in current use. Criteria for selection and application of methods. Use of computing facilities to illustrate and implement methods. Regression and analysis of variance are the primary topics. Prerequisites: STA 552 or equivalent. Equivalent to Mat 558. Students may not receive credit for STA 558 and Mat 558.

STA 559 Methods of Data Analysis II (3)
Continuation of STA 558. Topics include clustering, multi-variate analyses, sequential and non-parametric methods. Prerequisites: STA 558 or equivalent. Equivalent to Mat 558. Students may not receive credit for STA 559 and Mat 558.

STA 560 Introduction to Stochastic Processes I (3)
An introduction to applied stochastic processes. Topics include Markov chains, queuing theory, renewal theory, Poisson processes and extensions, epidemic and disease models. Prerequisites: STA 552 or an introductory probability course. Equivalent to Mat 560. Students may not receive credit for STA 560 and Mat 560.

STA 561 Introduction to Stochastic Processes II (3) Continuation of STA 560. More advanced topics in Markov chains, queuing theory, renewal theory, Poisson processes and extensions, epidemic and disease models. Prerequisites: STA 560 or permission of the instructor.

STA 562 Design of Experiments I (3)
Principles in the design and analysis of controlled experiments. Topics include general linear hypotheses, multiple classifications, Latin squares and factorial designs. Prerequisites: STA 552 or equivalent. Equivalent to Mat 562. Students may not receive credit for STA 562 and Mat 562.

STA 564 Sample Survey Methodology I (3)
Principles of survey sampling and analysis. Topics include simple random sampling, stratified sampling, cluster sampling and multistage sampling. Prerequisites: STA 553 or equivalent. Equivalent to Mat 564. Students may not receive credit for STA 564 and Mat 564.

STA 566 Analysis of Categorical Data I (3)
Introduction to the analysis of categorical data. Topics include rates, ratios and proportions, relative risk, Cochran-Mantel-Haenszel procedures, linear and log-linear models for categorical data, maximum likelihood estimation and tests of hypotheses. Prerequisites: STA 552 or equivalent. Equivalent of Mat 566. Students may not receive credit for STA 566 and Mat 566.
STA 567 Analysis of Categorical Data II (3) Continuation of STA 566. Topics include more complex linear and log-linear models for categorical data, goodness of fit measures and tests of hypotheses.
Prerequisites: STA 566 or equivalent.

STA 571 Topics in Informatics (3) Selected topics in informatics, information systems, wide area networks, storing, retrieving and analyzing of medical and public health information.

STA 610 Statistical Analysis with Missing Data (3) The overall goal of this course is to develop a broad and thorough working knowledge of the missing data techniques at a practical, conceptual and mathematical level. The students are expected to gain hands-on experience applying these techniques in many settings commonly encountered in public health and biostatistics. Some examples include multivariate normal data, genomics data, multilevel data, mixed continuous and categorical data with missing values. Methods that use missing-data techniques to solve non-missing data problems such as ambiguous genotype assignments in genetics data, random-effects models or potentially observable framework in estimating causal effects of treatments are also discussed as optional topics.

STA 654 Probability and Theory of Statistical Inference I (3) Univariate and multi-variate distribution theory, properties of estimators, large sample theory, confidence intervals and theory of tests. Prerequisites: STA 555 or equivalent.

STA 655 Probability and Theory of Statistical Inference II (3) Continuation of STA 654. Advanced theory of tests, decision theory and other topics. Prerequisites: STA 654 or equivalent.

STA 656 Design of Clinical Trials (3) Introduction to topics in the design and analysis of clinical trials and related experiments. Prerequisites: STA 555 or equivalent.

STA 658 Mathematical Models in Biometry I (3) Topics in the mathematical and statistical methods required to model deterministic and stochastic models for phenomenon found in the different areas of biostatistics and the health sciences. Prerequisites: STA 555 or equivalent.

STA 660 Linear Models I (3) Topics include the theory of least squares, distribution of quadratic forms, G-inverse, general Gauss-Markov model, estimation, hypothesis tests, confidence intervals for unrestricted and restricted models, regression models and analysis of variance. Prerequisites: STA 555 or equivalent. Students may not receive credit for STA 661 and Mat 660.
STA 661 Linear Models II (3)
Continuation of STA 660. Topics include advanced analysis of variance and analysis of covariance, repeated measures, mixed and random models.
Prerequisites: STA 660 or equivalent.

STA 662 Multivariate Analysis I (3)
Topics include the basic properties of multi-variate normal distributions and other related distributions, inference in multi-variate cases and principle component analysis.
Prerequisites: STA 555 or the consent of the instructor.

STA 663 Multivariate Analysis II (3)
Continuation of STA 662. Topics include discriminate analysis, canonical correlation analysis and factor analysis.
Prerequisites: STA 662 or the consent of the instructor.

STA 664 Time Series Analysis I (3)
Topics include the study of inference, estimation, prediction, parsimonious description for univariate time-ordered data, various models including Box-Jenkins and classical stationary processes with rational spectral densities.
Prerequisites: STA 555 and STA 559 or consent of the instructor. Equivalent to Mat 664. Students may not receive credit for STA 664 and Mat 664.

STA 665 Time Series Analysis II (3)
Continuation of STA 664. Advanced topics include the study of univariate and multi-variate time-ordered data, various models including Box-Jenkins and classical stationary processes with rational spectral densities.
Prerequisites: STA 664 or consent of the instructor.

STA 666 Survivorship Analysis I (3)
Topics in survival functions, hazard rates, life tables, estimation of survival functions from complete and censored data, fitting parametric models, tests of hypotheses, and covariate models.
Prerequisites: STA 555 or consent of instructor.

STA 667 Survivorship Analysis II (3)
Continuation of STA 666. Advanced topics in the theory of survival functions for complete and censored data, tests of hypotheses, and time dependent covariate models.
Prerequisites: STA 666 or consent of instructor.

STA 668 Independent Study in Biometry and Statistics (3)
Selected study of a topic in Biometry and Statistics. Prerequisites: Consent of the instructor.
STA 669 Master's Seminar in Biometry and Statistics (3)
Selected topics in statistics. A report is written on the subject studied. Required of all candidates for a master's degree in Biostatistics, except those who write a master's thesis. Prerequisites: Consent of the instructor.

STA 670 Longitudinal Data Analysis (3)
In this course, students learn about statistical techniques for analyzing longitudinal, or repeated measures, and/or clustered data. Main focus is primarily on application of various statistical models commonly used in the aforementioned data types, with direct application illustrated using standard statistical software. Thus, students who complete the course will learn how to analyze longitudinal data and interpret the results from such analysis.

STA 868 Independent Study and Research in Biometry and Statistics (2-5)
Independent study at the doctoral level under the direction of a member of the Biometry and Statistics faculty. May be repeated for credit. Prerequisite: Consent of instructor.

STA 899 Doctoral Dissertation (3-12 L.U.E.)
May be repeated for credit. Load equivalent only. Prerequisite: Consent of dissertation director.
THE MPH PROGRAM

The Master of Public Health (MPH) is an interdisciplinary professional degree in public health that builds on our school’s unique partnership between the University at Albany and the New York State Department of Health to prepare you for a variety of career directions:

- Public health practice in a local, state, or national health department – in the US or overseas
- Practice in a non-governmental health organization, such as the Capital District African American Coalition on AIDS, the American Cancer Society, the International Red Cross/Red Crescent Society
- Work in healthcare administration at a hospital or other healthcare organization
- Pursue further study, such as a DrPH or PhD in a public health discipline, medical school, nursing school, or other health professional school

Because of the degree’s interdisciplinary nature, MPH students take core courses in six areas:

- Epidemiology
- Biostatistics
- Health policy & management
- Behavioral science
- Environmental health, and
- Biomedical science

There are also two core seminars: the First Year MPH Seminar, a year-long course will help you acquire skills that will help you throughout your graduate school and work careers, and the MPH Capstone Seminar, which will help you integrate the things you have learned by addressing a selected public health issue in a small interdisciplinary team. Beyond the core courses, students concentrate in one of the six disciplines listed above. Each concentration includes track-specific requirements, as well as electives. (See Plan of Study for details.)

A key feature of the MPH at UAlbany is the internship experience, which provides excellent preparation for entry into the practice of public health and allows you to explore a variety of practice areas to help you identify the kind of public health practice you are most excited about. Students complete 9 credits of internship (the equivalent of 4½ months full time), in at least two different public health settings. The two settings may be as closely related as two different parts of the NYS Department of Health or as unrelated as a local hospital and an international nongovernmental organization. You can waive up to 6 credits of internship if you have significant past public health experience.

Credit Summary
The total number of credit hours required for the MPH degree ranges from 45 to 51 (depending on whether you are able to waive internship credits):

- 18 credit hours of Core Courses
- 3 credit hours of Core Seminars
- 21 credit hours of Track requirements & electives
- 9 credit hours of Internships

Evaluation
Throughout your time in the MPH program, you will be evaluated based on the following:
Course grades: You must maintain a minimum GPA of 3.0 throughout your enrollment in the MPH program. You must also maintain a minimum GPA of 3.0 in the core courses. If your GPA falls below that level, you will be placed on academic probation and may need to retake courses to improve your GPA.

Internship: Your performance during the internship will be assessed by your internship mentor and your academic advisor, based on your day-to-day functioning during the internship, achievement of the specific objectives of the internship, and a final paper and presentation about your internship project. Internships are graded on a Pass/Fail basis, and you need to get a passing grade on all internships in order to stay in the program.

Code of Conduct

Please review the University’s Community Rights & Responsibilities guide for detailed information about academic integrity and other aspects of student conduct at UAlbany: http://www.albany.edu/judicial/conduct.shtml

We hope you enjoy your time at UAlbany in the MPH program! If you have questions, you can contact any of us for answers:

• your advisor
• your MPH track chair or department chair
• your department’s assistant to chair
• Katrina Chamberlain, Director, Internships & Career Services, kchamberlain@albany.edu
• Caitlin Reid, Assistant Dean for Student Affairs, cmreid@albany.edu
• Diane Dewar, Associate Dean for Academic Affairs, ddewar@albany.edu

The students in the MPH program with a concentration in Epidemiology will take the following courses in their first semester:

Epi 501 Principles and Methods of Epidemiology I (3)+;
Epi 514 Computer Programming for Data Management and Analysis in Public Health (3)+;
Epi 552 Principles of Statistical Inference I (3)+;
BMS 505 Biological Basis of Public Health (3) +;

The second semester students will take the following:

EPI 502 Principles and Methods of Epidemiology II (3);
EPI 553 Principles of Statistical Inference II (3);
HPM 500 or HPM 525
Elective as approved by your advisor
Students in the MPH program will be eligible to complete an internship in the summer of their first year in the program. Students should begin working with their advisor and the School’s Internship Coordinator early in the spring semester.

The students entering in the MPH program with a concentration in Biostatistics will take the following courses in their first semester:

Epi 501 Principles and Methods of Epidemiology I (3)+;
Epi 514 Computer Programming for Data Management and Analysis in Public Health (3)+;
STA 554 Introduction to the Theory of Statistics (3)+;
STA 558 Data Analysis (3)+

For full program requirements please refer to the Plan of student for each concentration in the appendix of this manual.
DrPH PROGRAM DESCRIPTION

Academic course work and practicum experiences integrate learning objectives associated with mastery of DrPH competencies adopted by the Association of Schools of Public Health (2008): Advocacy, critical analysis, communication, community/cultural orientation, leadership, management, and professionalism and ethics. Knowledge of the five public health disciplines – biostatistics, epidemiology, environmental health, social and behavioral sciences, and health policy and management – is the foundation upon which the competencies are built.

Since the DrPH is an interdisciplinary degree, there are two departmental concentrations, Health Policy Management and Behavior and Epidemiology and Biostatistics. Within departments there is latitude to pursue specialty areas such as infectious disease or cancer epidemiology, economic policy analysis, or program development and evaluation.

Two 6-credit DrPH practicum placements are the cornerstones of the program. Practicum experiences provide broad exposure to public health issues in more than one setting, such as a state or local health department or community-based agency, and are an opportunity to develop ideas for the doctoral project. The intent of the DrPH practicum placements is to demonstrate mastery of evidence-based public health decision-making and capacity to translate empirical knowledge into effective public health practice. The practicum experience helps students develop and demonstrate leadership, independence and originality in a project with a significant public health impact. Examples include: design and implementation of an epidemiological study or surveillance system, leading a workgroup to develop a policy or strategic plan, and evaluation of effectiveness of a behavior change intervention (e.g., tobacco cessation or HIV prevention).

Students must pass a comprehensive qualifying examination after all DrPH coursework is completed and before the Doctoral Project can be initiated. The exam consists of two halves: general and concentration-specific, which are graded separately.

The doctoral project is a methodologically sound, substantial body of work in which the students proposes a solution for a particular aspect of a significant public health problem. The dissertation demonstrates the ability to translate empirical knowledge into public health practice. The doctoral project and dissertation are culminating experiences that ultimately prepare graduates to assume leadership positions in public health at the local, state, national or international level.

CONTACT INFORMATION:

Barry R. Sherman, Ph.D.
Director
Bsherman@uamail.albany.edu
Appendix

- Advisement Form
- Plans of Study
- Request for Change
- Request for Course Waiver
- Transfer of Course Credit Request
- University at Albany Request for Transfer of Credit to a Graduate Program
MS/PhD Advisement Form

Name ___

Advisor ___

Program and Degree ___

Matriculated ___________ Non Degree ________________

AVN number _______________ Semester ________________

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Course Name</th>
<th>Class Number</th>
<th>Permission Number</th>
<th>Days and Times</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Student signature ___________________________ Date ________________

Advisor signature ___________________________ Date ________________
SCHOOL OF PUBLIC HEALTH, UNIVERSITY AT ALBANY
PLAN OF STUDY FOR MASTER OF SCIENCE
EPIDEMIOLOGY

Name of Student: __
Department: ________________________
Faculty Advisor: ___

CORE CURRICULUM

<table>
<thead>
<tr>
<th>Course</th>
<th>Course Title</th>
<th>Grade</th>
<th>Credits</th>
<th>Semester Taken</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPI 501</td>
<td>Principles and Methods of Epidemiology I</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>EPI 502</td>
<td>Principles and Methods of Epidemiology II</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>EPI 503</td>
<td>Principles of Public Health</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>EPI 514</td>
<td>Computer Programming and Data Management in Public Health</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>EPI 552</td>
<td>Principles of Statistical Inference I</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>EPI 553</td>
<td>Principles of Statistical Inference II</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>EPI 602</td>
<td>Master’s Seminar in Epidemiology</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>EPI 690</td>
<td>Field Placement</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>EPI 699</td>
<td>Master’s Thesis</td>
<td></td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

25 TOTAL

ADDITIONAL SUPPORTING COURSE (3 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Course Title</th>
<th>Grade</th>
<th>Credits</th>
<th>Semester Taken</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPI</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

12 Total

1 Transfer credit for any of these courses must be accompanied by an approved petition showing that a comparable graduate level course was completed at another institution.

FIELD PLACEMENT:

<table>
<thead>
<tr>
<th>COURSE</th>
<th>FIELD PLACEMENT</th>
<th>CREDITS</th>
<th>YEAR TAKEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epi 690</td>
<td></td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Thesis Completed? YES NO
TOTAL CREDITS = 37 Credits
Name of Student: __
Department: ____________________________
Faculty Advisor: _______________________________________

CORE CURRICULUM1

<table>
<thead>
<tr>
<th>Course</th>
<th>Course Title</th>
<th>Grade</th>
<th>Credits</th>
<th>Semester Taken</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPI 501</td>
<td>Principles and Methods of Epidemiology I</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>STA 554</td>
<td>Introduction to the Theory of Statistics I</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>STA 555</td>
<td>Introduction to the Theory of Statistics II</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>STA 558</td>
<td>Methods of Data Analysis I</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>STA 559</td>
<td>Methods of Data Analysis II</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>STA</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>EPI 514</td>
<td>Computer Programming and Data Management</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>21</td>
<td></td>
</tr>
</tbody>
</table>

**at least one of STA 556, STA 560, STA 562, STA 564 or STA 566.

ADDITIONAL SUPPORTING COURSE (12 credits as approved by your Advisor)

<table>
<thead>
<tr>
<th>Course</th>
<th>Course Title</th>
<th>Grade</th>
<th>Credits</th>
<th>Semester Taken</th>
</tr>
</thead>
<tbody>
<tr>
<td>STA</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

1 Transfer credit for any of these courses must be accompanied by an approved petition showing that a comparable graduate level course was completed at another institution.

MASTER’S PROJECT

<table>
<thead>
<tr>
<th>COURSE</th>
<th>CREDITS</th>
<th>YEAR TAKEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>STA 669</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Paper Completed? YES NO

TOTAL CREDITS = 36 Credits
SCHOOL OF PUBLIC HEALTH, UNIVERSITY AT ALBANY
PLAN OF STUDY FOR DOCTORAL PROGRAM
EPIDEMIOLOGY

Name of Student: __
Department: ________________________________
Faculty Advisor: __

CORE CURRICULUM

<table>
<thead>
<tr>
<th>Course</th>
<th>Course Title</th>
<th>Grade</th>
<th>Credits</th>
<th>Semester Taken</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPI 501</td>
<td>Principles and Methods of Epidemiology I</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>EPI 502</td>
<td>Principles and Methods of Epidemiology II</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPI 514</td>
<td>Computer Programming and Data Management in Public Health</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPI 552</td>
<td>Principles of Statistical Inference I</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPI 553</td>
<td>Principles of Statistical Inference II</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPI 601</td>
<td>Topics in Epidemiologic Methods</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPI 612</td>
<td>Quantitative Methods of Epidemiology</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPI 690</td>
<td>Field Placement</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>25</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ADDITIONAL SUPPORTING COURSE (minimum of 6 credits as approved by your Advisor)

<table>
<thead>
<tr>
<th>Course</th>
<th>Course Title</th>
<th>Grade</th>
<th>Credits</th>
<th>Semester Taken</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

COURSE IN AREA OF EXPERTISE (14 credits as approved by your Advisor)

<table>
<thead>
<tr>
<th>Course</th>
<th>Course Title</th>
<th>Grade</th>
<th>Credits</th>
<th>Semester Taken</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Credits:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

66
1. Transfer credit for any of these courses must be accompanied by an approved petition showing that a comparable graduate level course was completed at another institution.

SCHOOL OF PUBLIC HEALTH, UNIVERSITY AT ALBANY
PLAN OF STUDY FOR DOCTORAL PROGRAM
BIOSTATISTICS

Name of Student: __
Department: BIOSTATISTICS
Faculty Advisor: __

CORE CURRICULUM

<table>
<thead>
<tr>
<th>Course</th>
<th>Course Title</th>
<th>Grade</th>
<th>Credits</th>
<th>Semester Taken</th>
</tr>
</thead>
<tbody>
<tr>
<td>STA 554</td>
<td>Introduction to the Theory of Statistics I</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>STA 555</td>
<td>Introduction to the Theory of Statistics II</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>STA 560</td>
<td>Introduction to Stochastic Processes I (3)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

**At least 2 applied Statistics Courses.

ADDITIONAL SUPPORTING COURSE (minimum of 15 credits as approved by your Advisor)

<table>
<thead>
<tr>
<th>Course</th>
<th>Course Title</th>
<th>Grade</th>
<th>Credits</th>
<th>Semester Taken</th>
</tr>
</thead>
<tbody>
<tr>
<td>STA</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

** 15 Minimum Total

1 Transfer credit for any of these courses must be accompanied by an approved petition showing that a comparable graduate level course was completed at another institution.
SCHOOL OF PUBLIC HEALTH, UNIVERSITY AT ALBANY
PLAN OF STUDY FOR MASTER OF PUBLIC HEALTH DEGREE

Name of Student: __

Area of Concentration: EPIDEMIOLOGY

Name of M.P.H. Advisor: __

CORE COURSES

<table>
<thead>
<tr>
<th>Course</th>
<th>Course Title</th>
<th>Credits</th>
<th>GRADE</th>
<th>YEAR TAKEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPI 501</td>
<td>Principles and Methods of Epidemiology I</td>
<td>3</td>
<td>____</td>
<td>__________</td>
</tr>
<tr>
<td>EPI 552</td>
<td>Principles of Statistical Inference I</td>
<td>3</td>
<td>____</td>
<td>__________</td>
</tr>
<tr>
<td>BMS 505</td>
<td>Biological Basis of Public Health</td>
<td>3</td>
<td>____</td>
<td>__________</td>
</tr>
<tr>
<td>EHT 590</td>
<td>Introduction to Environmental Health</td>
<td>3</td>
<td>____</td>
<td>__________</td>
</tr>
<tr>
<td>HPM 500</td>
<td>Health Care Organization, Financing and Delivery</td>
<td>3</td>
<td>____</td>
<td>__________</td>
</tr>
<tr>
<td>HPM 525</td>
<td>Social and Behavioral Aspects of Health</td>
<td>3</td>
<td>____</td>
<td>__________</td>
</tr>
<tr>
<td>SPH 680</td>
<td>First Year MPH Seminar</td>
<td>2</td>
<td>____</td>
<td>__________</td>
</tr>
<tr>
<td>SPH 685</td>
<td>Capstone MPH Seminar</td>
<td>1</td>
<td>____</td>
<td>__________</td>
</tr>
</tbody>
</table>

21 TOTAL

ADDITIONAL QUANTITATIVE COURSE

<table>
<thead>
<tr>
<th>Course</th>
<th>Course Title</th>
<th>Credits</th>
<th>GRADE</th>
<th>YEAR TAKEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPI 553</td>
<td>Principles of Statistic Inference II</td>
<td>3</td>
<td>____</td>
<td>__________</td>
</tr>
</tbody>
</table>

3 TOTAL

REQUIRED COURSES FOR AREA OF CONCENTRATION

<table>
<thead>
<tr>
<th>Course</th>
<th>Course Title</th>
<th>Credits</th>
<th>GRADE</th>
<th>YEAR TAKEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPI 502</td>
<td>Principles of Epidemiology II</td>
<td>3</td>
<td>____</td>
<td>__________</td>
</tr>
<tr>
<td>EPI 514</td>
<td>Computer Programming for Data Mgmt</td>
<td>3</td>
<td>____</td>
<td>__________</td>
</tr>
<tr>
<td>EPI 503</td>
<td>Principles of Public Health</td>
<td>3</td>
<td>____</td>
<td>__________</td>
</tr>
</tbody>
</table>

9 TOTAL

ELECTIVES as approved by advisor
(Must include two 600-level courses in Epidemiology)

<table>
<thead>
<tr>
<th>Course</th>
<th>Course Title</th>
<th>Credits</th>
<th>GRADE</th>
<th>YEAR TAKEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPI 6XXX</td>
<td>____________________________</td>
<td>_____</td>
<td>_____</td>
<td>________</td>
</tr>
<tr>
<td>EPI 6XXX</td>
<td>____________________________</td>
<td>_____</td>
<td>_____</td>
<td>________</td>
</tr>
<tr>
<td>TBD</td>
<td>___________________________</td>
<td>_____</td>
<td>_____</td>
<td>________</td>
</tr>
</tbody>
</table>

9 TOTAL

1 Transfer credit for any of these courses must be accompanied by an approved petition showing that a comparable graduate level course was completed at another institution.
* Students must take and pass (80% or better) a basic algebra placement test before enrolling in 552 as outlined in the enrolled student resource packet.

INTERNSHIPS² (Up to 6 credits may be waived). ³

<table>
<thead>
<tr>
<th>Course</th>
<th>Course Title</th>
<th>Credits</th>
<th>GRADE</th>
<th>YEAR TAKEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

9 TOTAL

TOTAL CREDITS = 51 HOURS MINIMUM, or 45 credits with a 6 credit internship waiver.

List of Suggested Electives

EPI 601 General Topics in Epidemiologic Methods
EPI 604 Cancer Epidemiology
EPI 605 Infectious Disease Epidemiology
EPI 608 Injury Epidemiology
EPI 609 Reproductive Epidemiology
EPI 610 AIDS Epidemiology
EPI 611 Controversies in Epidemiology
EPI 612 Quantitative Methods in Epidemiology
EPI 613 Occupational and Environmental Epidemiology
EPI 615 Hospital Epidemiology
EPI 616 Social Class and Race in Epidemiology
EPI 619 Diabetes Epidemiology
EPI 620 Cardiovascular Diseases Epidemiology
EPI 621 GIS
EPI 624 Genetic Epidemiology
EPI 625 Zoonoses Epidemiology

² Internships must be completed in at least two different settings, e.g. NYSDOH, other state agency, CDC, county health department, NYCDOHMH, non-governmental organization, hospital, global site. Separate parts of the NYSDOH or other large agencies can count as different settings.

³ For waiver credit, attach description of previous public health experience. The waiver petition must be submitted to Internship Subcommittee for final approval.
SCHOOL OF PUBLIC HEALTH, UNIVERSITY AT ALBANY
PLAN OF STUDY FOR MASTER OF PUBLIC HEALTH DEGREE

Name of Student: __

Area of Concentration: BIOSTATISTICS

Name of M.P.H. Advisor: __

CORE COURSES

<table>
<thead>
<tr>
<th>Course</th>
<th>Course Title</th>
<th>Credits</th>
<th>GRADE</th>
<th>YEAR TAKEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPI 501</td>
<td>Principles and Methods of Epidemiology I</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPI 554</td>
<td>Introduction to the Theory of Statistics I</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EHT 590</td>
<td>Introduction to Environmental Health</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPM 500</td>
<td>Health Care Organization, Delivery and Financing</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPM 525</td>
<td>Social and Behavioral Aspects of Public Health</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPH 680</td>
<td>First Year MPH Seminar</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPH 685</td>
<td>Capstone MPH Seminar</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

18 TOTAL

REQUIRED COURSES FOR AREA OF CONCENTRATION

<table>
<thead>
<tr>
<th>Course</th>
<th>Course Title</th>
<th>Credits</th>
<th>GRADE</th>
<th>YEAR TAKEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPI 555</td>
<td>Introduction to the Theory of Statistics II</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPI 514</td>
<td>Computer Programming for Data Management</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STA 558</td>
<td>Data Analysis</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STA 559</td>
<td>Data Analysis II</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STA 566</td>
<td>Analysis of Categorical Data</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

15 TOTAL

ELECTIVES as approved by advisor (See list of suggested electives below)

<table>
<thead>
<tr>
<th>Course</th>
<th>Course Title</th>
<th>Credits</th>
<th>GRADE</th>
<th>YEAR TAKEN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6 TOTAL

1 Transfer credit for any of these courses must be accompanied by an approved petition showing that a comparable graduate level course was completed at another institution.
INTERNSHIPS² (Up to 9 credits may be waived). ³

<table>
<thead>
<tr>
<th>Course</th>
<th>Course Title</th>
<th>Credits</th>
<th>GRADE</th>
<th>YEAR TAKEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL CREDITS = 51 HOURS MINIMUM, or 45 credits with a 6 credit internship waiver.

² Internships must be completed in at least two different settings, e.g. NYSDOH, other state agency, CDC, county health department, NYCDOHMH, non-governmental organization, hospital, global site. Separate parts of the NYSDOH or other large agencies can count as different settings.

³ For waiver credit, attach description of previous public health experience. The waiver petition must be submitted to Internship Subcommittee for final approval.

List of Suggested Electives

- EPI 502 Principles of Epidemiology II
- EPI 503 Principles of Public Health
- STA 697 Bioinformatics

RECOMMENDATIONS FOR SCHEDULING

There are many possible ways to set up the schedule of courses to be taken while completing the MPH in biostatistics, but there are some specific suggestions that will be relevant to all students as they plan their schedule.

- There are two sets of courses that are organized as a sequence and therefore should be taken in consecutive semesters. The two sets of paired courses are EPI 501/ EPI 502 and STA 554/ STA 555. Both sets of paired courses are offered in every academic year, with the first course in the sequence (i.e. EPI 501 and STA 554) taught in the fall semester.
- As of the 2004 – 2005 academic year, two other required courses (BMS 505 and STA 558) are only offered in the fall semesters. Therefore, these courses can only be taken at that time.
- In considering electives, students should identify courses that are prerequisites and make sure that the prerequisite courses are taken early in the MPH program. Some elective courses are taught every other academic year; students need to plan accordingly so that they will not miss the opportunity to take these courses.
SCHOOL OF PUBLIC HEALTH, UNIVERSITY AT ALBANY
PLAN OF STUDY FOR DOCTOR OF PUBLIC HEALTH DEGREE (DrPH)

Name of Student: __

Concentration: HPMB _______ EPI/BIOSTAT_________

Name of DrPH Advisor: _______________________________________

REQUIRED CORE COURSES

<table>
<thead>
<tr>
<th>Course</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grade</th>
<th>Year Taken</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPH Core: 15 CREDITS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPI 501</td>
<td>Principles and Methods of Epidemiology I</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STA 552</td>
<td>Principles of Statistical Inference I</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EHT 590</td>
<td>Introduction to Environmental Health</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPM 500</td>
<td>Health Care Organization Delivery & Finance</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPM 525</td>
<td>Social and Behavioral Aspects of Public Health</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DrPH Core: 12 CREDITS

REQUIRED:

<table>
<thead>
<tr>
<th>Course</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grade</th>
<th>Year Taken</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPM 627</td>
<td>Public Health Education</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPI 502</td>
<td>Principles of Epidemiology</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STA 553</td>
<td>Principles of Statistical Inference II</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SELECT 1:

(based on training and experience)

Management (e.g., HPM 641-approval of advisor) | 3 | | |
Policy (e.g., HPM 501-approval of advisor) | 3 | | |
Leadership (e.g., SPH 569-approval of advisor) | 3 | | |

Other Required:

<table>
<thead>
<tr>
<th>Course</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grade</th>
<th>Year Taken</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPH 701</td>
<td>Doctoral Seminar (attend fall and spring semesters, register spring only)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPI 514</td>
<td>Computer Programming for Data Management and Analysis in Public Health</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPH 780*</td>
<td>Doctoral Practicum Presentations</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEPHLI**</td>
<td>Leadership training</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

33 TOTAL

*NOTE: You must enroll in SPH 780 twice, each of the 2 semesters in which you deliver a presentation.

** Completion of NEPHLI training is strongly recommended (see http://www.albany.edu/sph/nephli) and courses such as: Business School: MGT 650 - Leadership Managerial Skills, MGT750 - Leadership and Management Skills, MGT761- Strategic Leadership and Change Management.

Six Courses in Area of Concentration

<table>
<thead>
<tr>
<th>Course</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grade Year Taken</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>_______________</td>
<td>______</td>
<td>________________</td>
</tr>
<tr>
<td>2.</td>
<td>_______________</td>
<td>______</td>
<td>________________</td>
</tr>
<tr>
<td>3.</td>
<td>_______________</td>
<td>______</td>
<td>________________</td>
</tr>
<tr>
<td>4.</td>
<td>_______________</td>
<td>______</td>
<td>________________</td>
</tr>
<tr>
<td>5.</td>
<td>_______________</td>
<td>______</td>
<td>________________</td>
</tr>
<tr>
<td>6.</td>
<td>_______________</td>
<td>______</td>
<td>________________</td>
</tr>
</tbody>
</table>

(18 credits)

Health Policy, Management and Behavior:

6 courses (18 credits) from following recommended as approved by advisor:

- HPM 511: Econ. Analysis.
- Strategic leadership/hlth mgmt (e.g. HPM 650)
- HPM 520: Research design.
- HPM 521 (Family and community) OR HPM 530 (Childhood obesity) OR HPM 625 (Aging)
- HPM 647: Program. Evaluation
- Other 600 level or above courses

Epidemiology and Biostatistics:

6 courses (18 credits) in upper-level Epi or Biostat as approved by advisor, including at least one advanced methods course:

Recommended choices:

- Intro stat theory (e.g. STA 554)
- Stat theory (e.g. STA 555)
- Intro data anal/methods (e.g. STA 558)
- Data anal/methods (e.g. STA 559)
- EPI 601: Advanced epi methods
- 600 level or above courses

Comprehensive Examination (2 parts)

General: Date taken: _____________________________ Pass: _____ Fail: ______

Concentration: Date taken __________________________ Pass: _____ Fail: ______

Two doctoral practicum rotations: (12 credits). Two different practicum experiences are required (6 credits each). Final assessments consist of a paper and presentation in SPH 780. *Doctoral Practicum Presentations*. Students must register for practicum credit during the two semesters in which the work is completed, either SPH 790 (first) or SPH 791 (second). Students must also register for SPH 780 *Doctoral Practicum Presentations (0 credit)* for the two semesters in which they make their presentations.
Research Tool:

The research tool requirement for the doctoral degree is met by satisfactorily demonstrating computer literacy. Satisfactory completion of EPI 514 (i.e. a grade of B or better) fulfills the research tool requirement.

DrPH Dissertation Committee (4 members minimum):

1. Chair (academic):
2. Mentor (expert):
3. Outside Reader:
4. DrPH Director:
5. Other (optional):

Dissertation Proposal Defense:

Date of presentation: _________ Approved: ______ Other Action: ______

Doctoral Project and Dissertation (12 credits):

You must be registered for doctoral project credits during the time of your dissertation:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>GRADE</th>
<th>YEAR(S) TAKEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPH 898 (before the proposal defense is approved)</td>
<td>______</td>
<td>______</td>
<td>______</td>
</tr>
<tr>
<td>SPH 899 (after approval)</td>
<td>______</td>
<td>______</td>
<td>______</td>
</tr>
</tbody>
</table>

Title: ________________________________

Chair: _______________________________

Date of Dissertation Defense: ____________ High Pass____ Pass____ Revisions_____

Total Credits: 75 (60 credits post MPH)
Student’s Signature Date

Advisor’s Signature Date

DrPH Director Date
REQUEST FOR CHANGE

Date _______________________ (check one) □ ADVISOR □ DEGREE PROGRAM □ MPH CONCENTRATION

Name ________________________________

Address ___

City/State/Zip __

Phone (H) ___

ID# __

Undergraduate Major ________________________________ GPA ________ G RE V______ Q______A_______

SCHOOL OF PUBLIC HEALTH COURSEWORK (For Change of Degree or Concentration only)

<table>
<thead>
<tr>
<th>Number</th>
<th>Instructor</th>
<th>Title</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REASON FOR CHANGE

__
__
__

APPROVALS

Current Advisor: ________________________________ Date: ________ Y/N

Assistant Dean
For Student Affairs: ________________________________ Date: ________ Y/N

Current Department Chair: ________________________________ Date: ________ Y/N
(for degree change only)

New Department Chair: ________________________________ Date: ________ Y/N

New Advisor: __ Date: ________ Y/N

Please note: Requests must be forwarded with student’s current file.
cc: New Advisor, Departments, Student
MS/MPH/PHD REQUEST FOR COURSE WAIVER

Student Name _____________________________________

Student ID Number _________________________________

Course to be waived: Cat# ___________ Title _______________________________

Course to be substituted Cat# _________ Title _______________________________
(advances course, same department)

Basis for request ___ a) Undergraduate Academic Experience
(check one) ___ b) Work Experience
___ c) Subprogram Requirements (i.e. PMR)

 a) Comparable Course Title:
University of College:
Date/Grade:

Attach: Narrative Course Content Description*
Faculty Description
Transcript

b) Work Experience:

Attach narrative description of comparable experience*.

 c) Subprogram Requirement: _________________

Signature of Program Coordinator

Approved Disapproved

Faculty Advisor _________________ □ □
Signature Date

Waived Course Faculty _________________ □ □
Signature Date

Substituted Course Faculty _________________ □ □
Signature Date

Prog. Acad. Sub Committee _________________ □ □
Signature Date

* It is recommended that the student obtain and follow the course outline of the “waived course” and specifically describe experience with the concepts covered.
Transfer of Course Credit Request

Complete separate form for EACH course submitted for transfer.

This form is to be appended to the SUNYA “Request for Transfer of Credits to a Graduate Program” form. For courses taken more than six years previously, also attach a “Request for Waiver of Statute of Limitations” form.

Name:
SPH Area of Specialty:
Advisor:

Course for which transfer credit is requested.

Title: __________________________
Catalog #: ______________________
College or University where taken: ______________________
Date Taken: ____________________
Semester Hours: __________________
Grade: _________________________
Comparable SUNY-SPH course#: ______________________

How does this course constitute an integral part of your program? (Check one only)

___ Required core course

___ Graduate level course relevant to public health

Documentation Attached (all required)

___ Narrative Course Content (syllabus, outline, etc.)

___ Faculty Description

___ Official Transcript

Comparable Course __________________________

Approved Disapproved

☐ ☐

Faculty/Director __________________________
Signature __________________________
Date __________________________

Faculty Advisor __________________________

Signature __________________________
Date __________________________

Academic Sub-Committee __________________
Chair __________________________
Signature __________________________
Date __________________________

78
REQUEST FOR TRANSFER OF CREDIT TO A GRADUATE PROGRAM

Name _______________________________ Student Number ______________
Address _____________________________ Phone Number _______________
City/State ____________________________ Zip Code ____________________

1. Graduate Dept. _________________ 2. Graduate program __________
3. Date of graduate study started at SUNY-Albany ____________________________
4. Date of most recent graduate study at SUNY-Albany _________________________
5. Courses and semester hours now being taken at SUNY-Albany (dept. & catalog no.)
 __________ _________ __________ ___________ Total semester hours: _____

6a. Course(s) for which transfer credit is requested:
 Dates Taken Catalog No. Course Title _________ Sem. Hrs.* Grade

 6b. College or university at which the course(s) were taken:
 Name _____________________ Address ____________________________

 *Quarter hours convert at 2/3 to semester hours and only full semester hour units may be applied
 to the program at Albany.

7. Attach documentation to provide information.

I request that credit for the graduate course(s) described above be accepted for transfer to my
graduate program at the State University of New York at Albany.

SIGNATURE ____________________________ ADDRESS _____________________

ACTION
Departmental Recommendation: Approved _______ Disapprove _____________
Date Action Taken: _________________ By: ______________________________
Comments:

Admissions Office: Approved _______ Disapprove _____________
Date Action Taken: _________________ By: ___________________________
Comments: