2. East Façade (Pollock 1980:75, fig. 142; 1980:76, fig. 144b) these motifs are carved into single stones as a whole. Here the motifs are of a very small size and they are also combined with step motifs. Another example of very small scrolls shows the façades of Room 18, East Wing of Structure 1 at Labna (Pollock 1980:20, fig. 29 a). The reliefs at Chunchimai are of larger size than the small ones at Sabacche and Labna but smaller than most of the large motifs. Nevertheless the monolithic scroll reliefs of Chunchimai seem to be unique in Maya architecture as no other scrolls of this size which have been carved into single stones were known before now. Originally, they might have belonged to the meander of an older building.

There are no indications of a base moulding at the structure. The highest portions of rubble on top of the vault seem to be higher than a four-member upper moulding would reach. Therefore, a roof comb might have existed on the building.

The flat walls of the main façade, the back side and also the small side façade to the right end before the edge of the building. All existing portions of walls end in a straight vertical line. This could be an indication of an elaborated edge as at Structure 1, East Wing, in the Puuc ruins of Labna (Maler 1997: Tafel 111 and 112). There could have been three profiled small columns at each corner. The rubble contains many small pieces of columns, which could originate from them. Certainly, they could also have been simple corners built of large flat stone elements.

The decorative elements above the entrance are very similar to the decoration of Puuc buildings of the Maya Late Classic Period. Therefore, the building of Chunchimai belongs to the same period. This very interesting structure is in great danger of collapsing if no work on consolidation is carried out soon.

References

Maler, Teobert

Pollock, Harry E.D.

Seven New Preceramic Sites Documented in Northern Belize

NEW HAVEN/ALBANY (Robert M. Rosenswig & Marilyn A. Masson). Research during four of the past six seasons of excavation in northern Belize by the Belize Postclassic Project has documented seven new Preceramic sites (Fig. 7). It is perhaps ironic that a project investigating the latest pre-Columbian period has repeatedly encountered sites from this early epoch. Due to an apparently similar lacustrine settlement focus, a number of Preceramic sites along the Freshwater Creek drainage underlie Terminal Classic and Postclassic sites without Formative or Classic period components between them. During six seasons of archaeological investigation we have excavated hundreds of square meters of Postclassic deposits down to bedrock, inadvertently providing a sample of buried Preceramic components as well as documenting where such deposits are not located. The pattern of an aceramic stratum under later ceramic bearing levels is not unique and has also been reported from the Copan Valley (Longyear 1948).

Northern Belize has been the focus of much of the Lowland Mesoamerican work on the preceramic times (Hester et al. 1996; Iceland and Hester 1996; Zeitlin 1984; Zeitlin and Zeitlin 2000). Recent paleoecological work in the region has shown that at around 2500 B.C., early inhabitants of the region put their mark on the landscape as they began to cut down the forests (Jones 1994; Jacob 1995; Pohl et al. 1996: 363). Concurrent with this environmentally documented change is a distinctive lithic technology that employed macroflakes, -blades and -cores, many of which were unifacially worked (Gibson 1991; Iceland 1997: 11, 95–113). Use-wear analysis of these tools produce results consistent with digging and cutting wood (Iceland 1997: 227–229; Hudler and Losche 1994 in Iceland 1997). These converging data suggest that horticultural societies exploited this environment using a specialized technology that endured for over a millennium and a half prior to the appearance of the first ceramics in the region. The sites reported here provide new evidence of the settlement patterns of these Late Archaic preceramic peoples.

Initially, aceramic deposits were encountered by the Belize Postclassic Project at Laguna de On Island and Caye Coco while bringing excavation units in Postclassic Maya levels down to sterile. Once we had removed the ceramic bearing
levels, artifact density dropped dramatically and only the occasional heavily patinated lithic flake was recovered. In 1997, we fortuitously encountered an aceramic, white clay level on Laguna de On Island that contained macro-flake tools, including a heavily resharpened constricted uniface (Rosenswig and Stafford 1998). We extended our initial excavation to a 1x4 m trench that documented Postclassic pits dug into the aceramic stratum. A program of test augering documented that there were at least three more such pits on the island. In addition that year, surface reconnaissance recovered a fine example of a constricted uniface at Doubloon Bank Lagoon (Fig. 8). In 1999, a distinctive orange (7.5YR 4/6), aceramic soil stratum approximately 15 cm thick was documented at Caye Coco to the north side of Structure 2, that was built during the Late Postclassic (Rosenswig 2001). In 2000, a significantly resharpened and heavily patinated constricted uniface as well as a pit feature were documented 50 cm below ground surface under a Postclassic terrace to the east of Structure 2 (Rosenswig 2001). Five gallons of soil from this pit were floated for macrobotanical remains and analysis is still pending.

After inadvertently encountering Preceramic components at Laguna de On island and Caye Coco in three seasons, we targeted these deposits at Progresso Lagoon during 2001 investigations. The preceramic component that we documented at Caye Coco in 2001 was approximately 150 m² in extent (Rosenswig 2002). A second pit feature was documented 30 m from the first, as well as a single posthole. In addition to patinated chipped stone tools and flakes, two hammer stones were recovered and evidence of worked oyster shell was also found. Forthcoming analysis of these materials will contribute to a fuller understanding of technology and adaptation of preceramic using peoples in the southern Maya Lowlands.

Also in 2001, excavations were initiated at the Fred Smith Site on the west shore of Progresso Lagoon facing Caye Coco. An area of approximately 800 m² had been stripped of topsoil by heavy machinery in preparation for house construction. The bulldozing occurred three weeks prior to our visit to the site on July 17. This disturbance had exposed both orange soils identical to those documented at Caye Coco and patinated lithics. Systematic surface collections at the Fred Smith Site over the next month recovered 305 heavily patinated lithics and 18 unslipped ceramic body shards that we were not able to place chronologically. Excavations of an undisturbed portion of the site documented an orange, aceramic soil horizon replete with patinated lithics. Unlike Caye Coco, the preceramic component of this site began virtually at ground surface (approximately 40 cm above bedrock) and there appears to have been no subsequent occupation of the site.

During the 2001 season, three other preceramic sites were documented on the west shore of Progresso Lagoon. First, Strath Bogue is a Terminal Classic mound group located 1.5 km west of Progresso Lagoon and approximately 1.5 km east of the New River. From an aceramic, orange soil stratum (identical to those at Caye Coco and the Fred Smith Site), twenty-five patinated lithics were recovered in one unit 80 cm below ground surface. In a nearby excavation unit, the base of a constricted uniface was recovered redeposited in mound fill. Second, preceramic remains were encountered at Subop 7 of a testing program on the west shore of Progresso Lagoon that was targeting Postclassic and Early Colonial deposits. Two hundred and eighty-seven patinated lithic flakes were recovered from the first 10 cm level of a 1x2 m test in a sugar cane field. Third, the Patt Work Site is located on both sides of the road as one approaches Progresso Lagoon from the south. The site was ploughed by heavy machinery and when we went to investigate the archaeological impact of the bulldozers we encountered orange soils littered with patinated lithics. In the course of surface collecting the site, not a single ceramic shard was encountered.

The consistent association of orange soil and heavily patinated lithics at Progresso Lagoon make site identification much simpler. It is interesting that Lowe points from the Ladyville I site were also found in a 10–15 cm thick mottled orange-sand stratum (Kelly 1993: 215). In 2001, we encountered three other locations with orange soils and heavily patinated lithics on the west side of Progresso Lagoon but due to time constraints were not able to systematically document
them. In fact, with the recent increase in the quantity of land disturbance using bulldozers, buried preceramic horizons are being exposed at an ever increasing rate and providing new data on this elusive time period.

The preceramic sites documented along the Freshwater Creek drainage add to known site types such as the lithic "quarry-production locales" at Colha on the edge of Cobweb Swamp (Iceland 1997:94) and the agricultural swamp contexts at Pulltrouser (Pohl et al. 1996). The seven sites reported above significantly increase the documented sample and provide new data on the lacustrine settlement of preceramic inhabitants of northern Belize. The five sites from Progresso Lagoon are in the general area of the Belize Archaic Archaeological Reconnaissance site of Benzt Land (Zeitlin 1984) that has two dates ca. 1400–1200 B.C. (Kelly 1993:225). Such dates are consistent with the Colha Late Preceramic period (1500–900 B.C.) of which unifacial technology generally, and the constricted uniface specifically, are diagnostic (Hester et al. 1996; Iceland 1997). A constricted uniface associated with a date of 1300–1000 B.C. is also known from Pulltrouser Swamp (Bower 1994).

The seven Preclassic sites reported here provide a glimpse at the buried universe of Preclassic settlements along the Freshwater Creek drainage. Three different settlement locations are evident: two sites were located on islands (Laguna de On Island and Caye Coco), two on the shores of lagoons (Doublon Bank and Fred Smith Site) and three in upland locations on modern agricultural lands (Strath Bogue, Patt Work Site and Test Program: Subop 7). Five of these sites (Laguna de On Island, Doublon Bank, Caye Coco, Fred Smith Site and Strath Bogue) can be cross-dated to the Late Preclassic period as constricted uniface were recovered and the other two sites (Patt Work Site and Test Program: Subop 7) are identified simply as preceramic due to the patinated lithics found within the distinctive orange soil horizon and a lack of associated ceramics.

A greater understanding of northern Belize sites occupied during the 1500 years between significant signs of forest clearing and the first appearance ceramic in the region is important in documenting the Late Archaic period in the evolution of Mesoamerican culture. Greater knowledge of this epoch (that lasted twice as long as the Classic period!) is essential in contextualizing the subsequent emergence of Middle Formative Maya peoples. Understanding the Late Preclassic period is also crucial in explaining why the inhabitants of the Maya Lowlands did not adopt ceramic technology and sedentism until centuries after their neighbors did in the rest of Mesoamerica.

References

Bower, B.

Gibson, E. C.


Iceland, H. B.

Iceland, H. B. and T. R. Hester

Jacob, J. S.

Jones, J. G.

Kelly, T. C.

Longyear, J. M.


Rosenswig, R. M.


Rosenswig, R. M. and T. W. Stafford, Jr.

Zeitlin, R. N.

Zeitlin, R. N. and J. F. Zeitlin