Following on POS 514 and 516, or another course on research questions/design, this
course offers an introduction to the most common
data analysis techniques. In POS 514 and 516,
you received a solid introduction to the basics of designing a research project and you worked on
the important first steps, developing a research question and examining the advantages and
disadvantages of alternative approaches/research designs appropriate for answering the relevant
question. Given that background, we will take the next step and examine in detail one of the
several analysis techniques/tools we have already introduced, statistical/quantitative analysis.
We will build up from the beginning, examining univariate statistics, bivariate and multiple
regression analysis, and techniques of statistical inference. The models we consider will be
increasingly sophisticated and powerful. As time permits, we will also overview some more
advanced statistical methods.

Because of its popularity, flexibility and importance for more advanced work, the heart of
the course will highlight regression analysis, considering the basics, building models of
increasingly complex specification and analyzing assumptions upon which the regression model
(ordinary least squares) (and subsequent alternatives to the regression framework) are based.

At the outset, please remember that social statistics need to be considered in a broader
perspective. Quantitative analysis is only one, albeit an important one, of several tools available
to you as you focus on research. A clearly stated research question accompanied by an
appropriate research design set up the statistics, which should be viewed as the tool for
answering your research question (as well as an end in themselves). The final stage in the
research process of course is interpreting the statistics. Because we are social scientists, we will
put a heavy emphasis on interpretation, critiquing published articles using statistics and
continuing the 516 tradition of developing your critical thinking skills as a social scientist. Thus,
calculation methods and numbers are an important part of the story, but we need to additionally
place them in a broader perspective.

Therefore, also note that, though the purpose of this class is to insure you come away
with a fair degree of mathematical/statistical knowledge, no prior statistical work is assumed.
Based on past behavior, it is understood that many students approach their intro stats courses
with considerable trepidation. So although there is much material to be covered, we will slow
down or speed up according to student needs. Variation in enthusiasm and ability will be
respected. At the other extreme, if students have had appropriate statistical background, we will
move more quickly.

Course Goals
It follows from the above that by the end of the course, you will be better able to:
- Appreciate the role of quantitative techniques as a tool to systematically answer social science research questions/explain variation in your dependent variable of choice.
- Understand and interpret commonly used statistical techniques/tools
- Critique with a sharper eye social science research as you read journals and books
- Become familiar with the logic or basic mathematics underlying some important and commonly used statistical techniques
- Work comfortably with a commonly used social science computer package (Stata)
- Understand the basics and appreciate the additional possibilities available should you need more sophisticated analysis tools
- Have Fun!!

Remember:
- An approach highlighting curiosity—rather than trepidation—befits a social/political scientist. Stop and think. What am I really interested in? What do I really want to know?
- You are first and foremost a social/political scientist using statistics as a tool to answer important research questions. You can always seek input on technical aspects of the work. You don’t have to know it all!
- What variation are we trying to explain?
- Feel free to consult, commiserate and complain to others. You are not in this alone!
- Even have fun!

Class Structure
Each week, class will have a similar structure. This structure was created with the hopes of furthering your understanding of quantitative methods generally and also their application to a variety of research topics and your ability to apply them.

The structure of each class will as follows:
- Introduction via a brief exercise,
- A discussion/lecture on the topic/statistical technique for the week
- A group/class exercise applying the statistical technique
- A conclusion particularly reiterating strengths and weaknesses of the technique
- An assignment due the following week reviewing the material

Course Requirements
- Weekly Assignments :(combination of problem sets, annotated STATA work, reaction papers); 20%; reaction papers and Stata work due at Tuesday classes; problem sets due by Fridays at 5 if you need more time.
- 2 Midterms: 20% each; due dates 3/15 (Friday before spring break) and 4/22, negotiable if necessary
- Final exam or final paper: 20% (approx 10-12 pages)
- Class Participation, exercises, and attendance: 20%. (Attendance required unless excused)

Books
There are many good statistics and econometrics books out. I am asking you to purchase (at as low a price as possible) Studenmund and Pollock (a user friendly intro to STATA). Chapters from Moore and McCabe are on Blackboard as are several Sage (little Green book) classics. Studenmund is concise, provides uniformity and stands as a good reference. Moore and McCabe provide more social science oriented examples and perhaps a little more explanation. The Sage
books are short, interpretive and written for social scientists. We will be working at various points from all. No need to spend a lot of money here; used or somewhat older editions are fine, and much is on Blackboard.

Sage Publications (a series of short “green” books covering a wide variety of statistical methods (http://www.sagepub.com; Quantitative Applications in the Social Sciences). We will be using several:

*Expect additional reading especially for Part III of the class.

Recommended for those interested:

Bashaw, W. L. Mathematics For Statistics

Useful Websites:
- http://www.stata.com/ - the Stata website
- http://polmeth.wustl.edu/ - The Society for Political Methodology
- http://wps.aw.com/awsstudentmund useecon_5/ - the textbook’s website (includes datasets)
- http://bcbs.wbfreeman.com/ips6e/default.asp?s=&n=&i=&v=&o=&ns=0&uid=0&rau=0 Moore and McCabe text website
- The Interuniversity Consortium for Political and Social Research (ICPSR) website http://www.icpsr.umich.edu/icpsrweb/landing.jsp
- ANES http://www.electionstudies.org
- ISSP http://www.issp.org
- ESS http://www.europesocialsurvey.org
- http://www.qog.pol.gu.se

Notes on Course Policies:

Students with Disabilities: If you need any class accommodations due to a disability, please utilize University resources as needed, and please let the professor know well in advance of any assignments requiring accommodation(s). It is a function of the University to provide such accommodations as needed.

Plagiarism and Academic Honesty

The strength of the university depends on academic and personal integrity. In this course, you must be honest and truthful. Plagiarism is the use of someone else's work, words, or ideas as if they were your own without giving the original author credit by citing him or her. If you have any questions about plagiarism, please contact me before submitting assignments for grading. Plagiarism violations will result in disciplinary action.

Additionally, it goes without saying that students are expected to meet the broader standards of academic honesty expected of students at a major university.

See link on University policy: http://www.albany.edu/eas/104/penalty.htm

See also the UAlbany Library “Plagiarism 101” Tutorial: http://library/albany.edu/usered/tut.html
Weekly Topics and Assignments
(More so than other classes, subject to adjustment based on student needs and interests—but we will stay on track!)

Part I: Getting Started

Week 1: 1/28: Overall Introduction and Intro to Univariate Statistics and STATA
Where does quantitative methods fit into the overall conceptualization of a research process? Why do people think the level of measurement of variables is so important? Why bother with univariate statistics? What are the advantages and disadvantages of alternative univariate statistics?

Week 2. 2/4: Math Refresher and Practice with Univariate Statistics (graphical and numerical representations)
*Blackboard math refresher handout from Prof Udi Sommers: 3 things you find easy, 3 things you find hard. Labeled Lecture 1 on BB
* Wheelan, Chapter 7
* Moore, sections 1.1, 1.2
* Pollock, ch. 1.2
*Reaction paper to the Wilkinson reading: In one to two pages, summarize and critique the argument. What were they trying to do, how did they go about doing it, and what do you think of their work? Explain.

Part II: The Regression Model and Other Basics

Week 3. 2/11: Intro to Bivariate Regression/Ordinary Least Squares
What is the purpose of the linear regression model? What procedures are used to estimate model coefficients and why? What statistics are important in the interpretation of output from a statistical package, and what does each tell you? What assumptions need to be satisfied for the results of regression to be viable?
*Moore, ch 2
* Pollock, ch. 8
* Studenmund, ch. 1
* Lewis-Beck ch. 1 and 2
* Univariate Statistics Assignment due

Week 4. 2/18 Bivariate Regression Practice and intro to Multiple regression
What does it mean to add independent variables to a regression model, controlling for additional variables? What are the similarities and differences between the bivariate and multiple regression models, and why are they important?
*Similarities and differences between bivariate and multiple regression?
*Studenmund, ch. 2, 3
* Wheelan Chapter 12
* article critique
* Bivariate Regression Assignment due

Week 5. 2/25: hypothesis testing: basic concepts, logic, steps in Process
What is so important about statistical inference? How does the process work, and what is the rationale for the procedures? What are the advantages and disadvantages of significance tests? (This week, we will also begin an examination of cross-tabulations.)

*Moore, ch. 1.3, 5.2, 6.1, 6.2
* Wheelan Chapter 9
* Pollock ch. 4 and 5
* Regression assignment #1 due

Week 6. 3/4: Practice and Extensions: Significance tests and Cross-tabulations
*Moore, ch. 7
*Studenmund, ch. 4, 5
*Pollock, ch. 3, 6, 7
*Johanas reading**
*Gerber, Green, and Nickerson, Testing for Publication Bias in Political Science. (2001.)
*Statistical inference assignment due

Week 7. 3/11: Review/summary of Part II
*Midterm due 3/14

3/18: Spring break

Part III: Regression Assumptions

Week 8. 3/25: Choosing Independent Variables and Multicolinearity
 Why is it so important to understand the assumptions upon which regression is based? What is choosing independent variables so important? What is multicollinearity, how do you diagnose it, and what are some ways you can take it into account in your statistical models?
*Studenmund, ch. 6, 8
*Lewis-Beck, relevant sections
* Schrodt, Seven Deadly Sins of Contemporary Quantitative Political Analysis. (2010)

Week 9. 4/1: Functional Form, Dummy Variables and Interactions
 What do you do if you think the relationships between your variables are nonlinear? Interactive? How do you handle nominal or ordinal independent variables in your work? Why is it so important to expand your models to include these possibilities, and, technically, how do you incorporate these additions to the models into your analysis?
*Studenmund, ch. 7
*Lewis-Beck, relevant sections.
*Pollock, ch. 9

Week 10. 4/8: Dichotomous Dependent Variables: Logistic Regression
 What do you do if your dependent variable isn’t based on interval data? Why do we need to learn yet another statistical technique, logit analysis? How does it work, and how is it similar or different than least squares regression?
*Studenmund ch. 13,
*Pollock, ch. 10

Part IV: Culmination; you made it!—read/critique articles of your choice, intro to more advanced methods, begin work on your final project

No Class 4/15

Week 11. 4/22: Article critiques
*Second midterm due

Week 12. 4/29: Overview of some “advanced” methods; time series, factor analysis, simultaneous equation models etc.
*Stude

Week 13. 5/6: wrap-up

Steps in Research Process

1. **Project Conceptualization**
 a. Project justification: Why is this an important topic?
 b. The Research Question: A 'why' question asking why there is variation in your dependent variable or phenomenon.
 c. Concept Definition: Define the major concept of your project (usually this means defining your dependent variable). Be clear about your definition. Think about the extent of agreement there would be on your definition. Think about possible alternative definitions and explain why yours is best.
 d. Hypotheses: What independent variables explain variation in your dependent variable? Be clear about the direction and type of hypothesis (positive/negative relationship, linear/curvilinear), and give three reasons why each independent variable should be related to your dependent variable.
 e. Rival hypotheses: This will be more important later, but after you have done a great job of steps a. through d., give some thought as to the role of third variables/alternative explanations in your project.
 f. Keep things simple. Really understand your two variable relationships before you move on.
 g. Remember this is a process and your thinking will evolve as you work through these steps.
2. Research Design.
 a. What type of research design is best suited for project (surveys, aggregate data, observation, experiments, content analysis, etc.)? Think about the advantages/disadvantages of alternative designs.
 b. Operationalization/measurement major concepts: Consider reliability, validity and level of measurement. Develop appropriate measures of concepts and justify why they are good measures.
 c. Issues of sampling.
 d. Other concerns that come up in designing your project.
3. Data analysis.
 a. Univariate statistics, particularly on the dependent variable and discussion of what is learned from them, e.g., Raw data, frequencies, central tendency, dispersion, etc.
 b. Bivariate statistics which test your hypotheses.
 c. Later on, multivariate statistics which test rival hypotheses.
4. Conclusions/implications
 a. Is the hypothesis supported or not? Explain.
 b. What has been learned about the hypotheses and what are its political/social/policy implications?
 c. What has been learned about the methods you used?
 d. Future Research?

Important Beginner Terms

- Variable: any characteristic of an individual/unit of analysis. A variable can take different values for different individuals.
- Independent/explanatory and dependent variables
- Explaining variation in the dependent variable, r**2
- Unit of analysis
- Cases, N
- Spreadsheet

Types of Variables

- Categorical variable: places an individual into one of several groups or categories (nominal and ordinal variables)
- Quantitative variable: takes numerical values for which arithmetic operations such as adding and averaging make sense (interval and ratio variables).
- Continuous vs. discrete variables
- Alpha numeric or string variables vs. numeric variables
- Nominal measurement is involved whenever the values assigned to a variable represent only different categories or classifications for that variable. Mutually exclusive and exhaustive but not ordered
- Ordinal measurement assumes that a comparison can be made on which observations have more or less of a particular attribute. Order matters, numbers don’t

- With an interval measurement the intervals between the categories or values assigned to the observations do have meaning. The value of a particular observation is important not just in terms of whether it is larger or smaller than another value (as in ordinal measures)
but also in terms of how much larger or smaller it is.

- Ratio measurement. This type of measurement involves the full mathematical properties of numbers. That is, the values of the categories order the categories, tell something about the intervals between the categories, and state precisely the relative amounts of the variable that the categories represent.

Univariate Statistics

- Distribution of a variable: The pattern of variation of a variable is called its distribution
- Graphical and numerical representations
- Check Overall pattern, deviations from the pattern
- Overall pattern: Shape, center, spread
- Deviations, range, outliers
- Peaks or modes
- Symmetric or skew
- Skewed to the right if the right tail (larger values) is much longer than the left tail (smaller values).