Do as many problems as possible.

1. Suppose that X is metrizable. Prove that X is 2nd countable if and only if X contains a countable dense subset.

2. Suppose that X is a topological space, U is open in X and A is dense in X. Prove that $U \subset \text{cl}(A \cap U)$. Here cl stands for closure.

3. Suppose that X is a compact metric space with metric d. Suppose that $f : X \to X$ is a function so that $d(x, y) = d(f(x), f(y))$ for all x, y in X. Prove that f is onto.

4. a. Suppose that X has a finite number of components. Prove that each component is open.

 b. Give an example to show that the conclusion is false if X has an infinite number of components.

5. Let J be an index set and for each $j \in J$ suppose that X_j is homeomorphic to $[0,1]$. Under what conditions on J is ΠX_j metrizable. Prove your answer.

6. Let R be given the half open interval topology where the basis consists of intervals closed on the left and open on the right. Which of the following subset are compact.

 a. $[0,1]$

 b. $\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\} \cup \{0\}$

7. Suppose that X and Y are both homeomorphic to S^2. Let Z be the space obtained when the north pole of X is identified to the south pole of Y and the north pole of Y is identified to the the south pole of X.

 a. What is $\Pi_1(Z)$?

 b. Describe the universal cover of Z.

8. Suppose that X is Hausdorff and Y is compact. Let $f : X \to Y$ be a continuous function which is 1-1 and onto. Must f be a homeomorphism?