1) Suppose \(p : E \to B \) is a covering map and \(f, g : [0,1] \to B \) are continuous maps such that \(pf = pg \) and \(f(0) = g(0) \). Prove that \(f(t) = g(t) \) for all \(t \) in \([0,1]\).

2) Let \(X \) be a 2\(^{nd}\) countable space.
 a) Prove that at most countably many points of \(X \) can be isolated points.
 b) Prove that every open cover of \(X \) has a countable subcover.

3) a) Let \(r : X \to A \) be a retraction and let \(i : A \to X \) be the inclusion map and let \(r^* \) and \(i^* \) be the induced homomorphisms of fundamental groups with some common base point. Assuming functorial properties of induced maps, what can you say about \(r^* \) and \(i^* \)?

 Now using part a as needed, tell whether each of the following is true or false and justify your answer. You can also assume the fundamental groups of specific spaces are known.
 b) If \(A \) is a retract of \(X \) and \(A \) is simply connected, so is \(X \).
 c) If \(A \) is a retract of \(X \) and \(X \) is simply connected, then so is \(A \).
 d) There is no retract of the projective plane \(\mathbb{P}^2 \) onto a subspace which is homeomorphic to the circle \(S^1 \).
 e) There is a retraction of the closed unit disk in \(\mathbb{R}^2 \) onto its boundary.

4) Let \(I_P^\omega \) and \(I_B^\omega \) denote the countable product of unit intervals with the product and box topologies, respectively.
 a) Determine with proof whether the identity map from \(I_P^\omega \) to \(I_B^\omega \) is continuous or not.
 b) Same question for the identity map from \(I_B^\omega \) to \(I_P^\omega \).
 c) Let \(A \) denote the set of points which are zero in all but finitely many coordinates. Determine, with proof, the closure of \(A \) in each topology.
5) Recall that a surjective map $f : X \to Y$ is a quotient map provided that a set U is open in Y if and only if $f^{-1}(U)$ is open in X.

a) Suppose $p : X \to Y$ and $q : Y \to X$ are continuous maps and $p \circ q = \text{the identity map of } Y$. Prove that p is a quotient map.

b) Let $f : R \times R \to R$ be projection onto the first coordinate and let p be the restriction of f to the space X consisting of all points (x, y) with $x \geq 0$ or $y = 0$ (or both). Prove that p is a quotient map that is neither an open map nor a closed map.

6) Let $X = P^2 \cup S^1$ denote the one point union of the projective plane and a circle, and let Y denote the subset of R^3 that is the union of the sets A, B, C where

\[
A = \{(x, y, z)|x^2 + y^2 \leq 1 \text{ and } z = 0 \text{ or } 1\}
\]

\[
B = \{(-\frac{1}{2}, 0, z)|0 \leq z \leq 1\}
\]

\[
C = \{(\frac{1}{2}, 0, z)|0 \leq z \leq 1\}
\]

a) Find the fundamental group of X and justify your answer.

b) Find the fundamental group of Y and justify your answer.

c) Pick one of these two spaces and describe its universal covering space.

7) Suppose X and Y are arbitrary spaces with Y compact. Let x_0 be a point of X and let U be an open set in the product space $X \times Y$ that contains $x_0 \times Y$. Prove that there exists an neighborhood V of x_0 such that $V \times Y$ is contained in U.