Do as many problems as you can.

1. Let \(X = \mathbb{R}^2 / \{\text{y-axis}\} \), the plane with the y-axis collapsed to a point, with the quotient topology.
 (a) Is \(X \) Hausdorff? Support your answer.
 (b) Is \(X \) locally compact? Support your answer.

2. Prove that a compact Hausdorff space is normal.

3. Let \(X \) be a compact metric space with metric \(d \) and the property that for all \(t < 1 \), there are pairs of points \(x_t, y_t \) so that \(d(x_t, y_t) = t \). Prove there are points \(x \) and \(y \) so that \(d(x, y) = 1 \).

4. Let \(\sim \) be the equivalence relation on the sphere
 \[
 S^2 = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\}
 \]
 given by
 \[
 (x, y, z) \sim (-x, -y, z).
 \]
 (In other words, each point is equivalent to the opposite point on the same circle of constant latitude.) Prove that \(S^2 / \sim \) with the quotient topology is homeomorphic to \(S^2 \).

5. (a) Prove that a compact metric space is second countable.
 (b) Let \(G \) be a graph (that is, one-dimensional simplicial complex) having a vertex which is an endpoint of infinitely many edges. Recall that the weak topology on \(G \) is the smallest collection of subsets such that the intersection with each open edge is open within that edge. Show that \(G \) with the weak topology is not metrizable.

6. (a) Give an example of a space which is connected but is not path-connected. You need to explicitly describe the space and prove it is an example.
 (b) Prove that a CW complex is connected if and only if it is path-connected.

7. Let \(p: \tilde{X} \to X \) be a covering map with \(\tilde{X} \) and \(X \) path-connected. Show that the number of points in \(p^{-1}(x) \) is independent of \(x \) in \(X \) and equals the index of the subgroup \(p_* \pi_1(\tilde{X}) \) in \(\pi_1(X) \). This number is called the number of sheets of the covering.

8. (a) Compute the fundamental group of \(\mathbb{R}P^2 \vee S^1 \), the one-point union of the projective plane and a circle.
 (b) Find all 2-sheeted and 3-sheeted coverings of \(\mathbb{R}P^2 \vee S^1 \).
 (c) Find the universal cover of \(\mathbb{R}P^2 \vee S^1 \).