1. Prove that $X \times Y$ is connected if and only if both X and Y are connected.

2. a. Assume that Y is compact. Prove that $p_x : X \times Y \rightarrow X$ is closed (p_x is the projection onto X).

 b. Show that the assumption that Y is compact is necessary.

3. Let X be Hausdorff and Y be compact Hausdorff. Then $f : X \rightarrow Y$ is continuous if and only if the graph of f is closed.

4. For each α in A let X_α be a topological space. Prove that $\prod X_\alpha$ is discrete if and only if each X_α is discrete and equal to one point for all but a finite number of α.

5. Prove that a compact metric space is second countable.

6. a. Let $f : X \rightarrow Y$ be a closed continuous surjection. Prove that if U is an open set containing $f^{-1}(y)$ for some y in Y then there exists an open set V containing y such that $f^{-1}(V) \subset U$

 b. Let $f : X \rightarrow Y$ be a closed continuous surjection such that Y and $f^{-1}(y)$ are compact for all y in Y. Prove that X is compact.

7. Find $\prod_1(X)$ and the universal cover of X where X is the union of the subsets A, B and C.

 $A = \{(x, y, z)|x^2 + y^2 \leq 1 \text{ and } z = 0 \text{ or } 1\}$

 $B = \{(-1/2, 0, z)| \text{ where } 0 \leq z \leq 1\}$

 $C = \{(1/2, 0, z)| \text{ where } 0 \leq z \leq 1\}$