1. State the following theorems:
 Fatou’s lemma,
 Lebesgue dominated convergence theorem,
 Fubini’s theorem,
 Egoroff’s theorem,
 Hölder’s inequality,
 The Radon-Nikodym theorem.

2. State and prove the Monotone convergence theorem (without relying on any of the
 other convergence theorems).

3. Prove that the sum of two measurable functions is a measurable function.

4. Show that if \(f \) is a monotone function on \([a, b]\) then \(f \) has at most a countable number
 of discontinuities.

5. Let \(f_n \) be a sequence of measurable functions such that \(f_n(x) \to f(x) \) almost every-
 where, and suppose that \(\sup \int_0^1 |f_n(x)| dx < \infty \).

 (a) Show that \(f \) is measurable and that \(\int_0^1 |f(x)| dx < \infty \).

 (b) Does \(\lim_{n \to \infty} \int_0^1 f_n(x) dx = \int_0^1 f(x) dx ? \)

6. Show how to construct a non-constant continuous function on \([0,1]\) which is different-
 tiable at each rational point and such that for every rational number \(x, \)
 \(f'(x) = 0 \).

7. Let \(f(x) \) be a measurable function on \([0, \infty)\) such that
 \(\int_0^\infty [f(x)]^n dx = c \) for \(n = 2, 3, 4 \).

 Show that \(f(x) = \chi_A(x) \) almost everywhere for some measurable set \(A \subseteq [0, \infty) \).

8. Show that if \(f \in L^1(X, \mu) \) then
 \(\int_0^\infty \mu\{x : |f(x)| > t\} \ dt = \int_X |f(x)| \ d\mu(x) \).