1. Let \(\epsilon \) be any fixed positive number. Construct an open subset \(U \subset \mathbb{R} \) such that \(\mathbb{Q} \subset U \) and the Lebesgue measure \(m(U) < \epsilon \).

2. Construct a subset in \(\mathbb{R} \) that is not Lebesgue measurable.

3. State and prove Lusin’s theorem.

4. Find a sequence of Lebesgue measurable functions \(\{f_n\} \) on \([0, 1]\) such that
 (a) \(\{f_n\} \) is convergent in measure.
 (b) \(\{f_n(x)\} \) is NOT convergent for any \(x \in [0, 1] \).

5. Show that the function \(f(x) = \ln(1/x) \) is in \(L^p(0, 1) \) for all \(1 \leq p < \infty \).

6. Let \(f \in L^1(\mathbb{R}) \). Its Fourier transform is defined
 \[
 \hat{f}(t) = \int_{-\infty}^{\infty} f(x)e^{-2\pi ixt}dx.
 \]
 Show that \(\hat{f} \) is bounded and continuous.

7. Let \(x \) and \(y \) be two vectors in a Hilbert space \(H \). Prove that \(\|x + cy\| \geq \|x\| \) for every complex number \(c \) if and only if \(x \) and \(y \) are orthogonal.

8. The Hardy space \(H^2(T) \) over the unit circle \(T \) is the Hilbert space with orthonormal basis \(\{z^k : k \geq 0\} \), where \(|z| \leq 1 \). For a fixed \(\lambda \in \mathbb{D} \) consider the linear functional \(F \) defined by \(F(f) = f(\lambda) \), \(\forall f \in H^2(T) \). Show that \(F \) is bounded. And find the function \(\phi \in H^2(T) \) such that
 \[
 F(f) = \langle f, \phi \rangle, \ \forall f \in H^2(T).
 \]